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We demonstrate methods for generating synthetic scenarios of embodied locomotion on sidewalks, drawn

from detailed observations of situation and of context on real-world streetscapes. We show that, through observa-
tion and sensing, quite rich and high-resolution data can be gleaned from small and fleeting windows on pedes-
trian locomotion as it unfolds in lived spaces. These insights can provide valuable explanations of how pedestrians
experience and embody encounters in physical and social context at localized and individualized scales of space

and time. Using agent Al, we demonstrate that this knowledge can be transferred into high fidelity models, capturing
the essence of embodied locomotion and providing a basis for experimentation with what-if scenario as simulation.
By implementing simulations as virtual reality media, we showcase an end-to-end experimental pipeline that allows
real human participants to embody themselves in synthetic sidewalks, directly using their innate and tangible percep-
tion and locomotion. Our approach establishes a new pliability between real and synthetic embodied locomaotion,
which we argue can provide experimental maneuverability relative to ordinary questions, as well as to extraordinary
scenarios that are challenging to examine on the ground. Sidewalk2Synth could also help to circumnavigate exist-
ing challenges in machine learning around training-based approaches that lack robust empirical evidence of priors
and that are otherwise resistant to generalization outside specific places and times.
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1 Introduction

“That’s not really me in there/I would never do that”
(Nine Inch Nails, 2016).

Streetscapes are an important sub-space of the built
environment, formed among the interstitial geogra-
phies that take hold between building fagades, sidewalks,
curbs, and roadways. They are often teeming with inter-
mingled activity that people routinely spill into, and
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course over. Pedestrians come to streetscapes from their
homes or from establishments that they have visited,
while others commingle with them to load and unload
passengers and goods onto transport systems and in and
out of businesses (Mishra et al., 2015; Sarker et al., 2015).
A variety of workers rely on streetscapes as a production
environment, including public works crews (Loukaitou-
Sideris & Ehrenfeucht, 2011), crossing guards (Gutier-
rez et al., 2014), and salespeople (Bhargava & Donthu,
1999), who must take care to read the shifting dynam-
ics of streetscapes as a servicescape. Many streetscapes
carry specific meaning—as places (Tuan, 1975, 1979)—
with cultural associations (Batty et al., 2003), with his-
torical significance (de Valera, 1986), and with persistent
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character that can shape them into attraction sites for
tourism (Chen et al., 2024; Urry, 2002).

Explaining the interplay among all these factors, col-
lated across the perspectives of many differently moti-
vated and acting individuals, each played out against
the broad milieu of streetscape settings and scenarios
presents significant overlapping complexity in inter-
pretation. It is therefore understandable to investigate
streetscape dynamics for commonalities, which could
form a starting point for understanding. Streetscapes
that are conventionally considered to be successful are
often regarded as both accessible to locomotion and gen-
erous in the overlapping opportunities for encounter that
they afford their visitors (Foltéte & Piombini, 2007). Both
considerations of how pedestrians build entanglement to
their surroundings—with movement and engagement—
can usefully be converged in the concept of “embodi-
ment”. At its core, embodiment is concerned with how
one’s behavior is physically enacted relative to encoun-
tered input (Kiverstein, 2012; Ziemke, 2013). Our consid-
eration of embodiment is focused on two special cases.
First, we investigate streetscape embodiment, wherein
behavior is brought to life in the physical and human
environments that streetscapes host. Second, we exam-
ine embodied locomotion, as enacted traversal through
streetscapes and the encounters that happen along the
way.

The high-level purpose of the paper is to show how
one might simulate synthetic embodiment, rather
directly, from locomotion context as it plays out on real
streetscapes. We chase this goal with three aims. First,
we endeavor to show the intimate connection between
pedestrians’ locomotion along streetscapes and their
embodiment to the streetscape. Studying this connection,
we reason, can assist in building knowledge of behav-
ioral geography (Golledge & Stimson, 1997). Second,
we present the case that the current generations of data
products that could inform understanding of embodied
locomotion could be very usefully supplemented with
fresh insight that can come from computing (Torrens,
2016a, 2018a, 2022a). Here, we examine two main path-
ways for computer science to contribute novel action-
able knowledge: automated observation of real embodied
pedestrian locomotion, and simulation-assisted explo-
ration of what-if factors that can be advanced in virtual
reality. Third, the details of getting this to work suggest
several promising lines of academic inquiry for the com-
munity, including empirical examination of whether
behavior might be robustly implied from observation
of encounters (Johansson et al., 2008), how immersive
sensing technologies could be adapted to capture pedes-
trian encounters in very small and fleeting windows
of space and time (Camara et al., 2020), and whether
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extended reality media can act as reliable experimental
environments (Chen et al., 2023; Coltekin et al., 2020).
We endeavor to show that these three aims are indeed
actionable through a unified pipeline that moves from
observation, through computational analysis, via models,
into simulation, and codified as empirical outputs. We
refer this pipeline as “Sidewalk2Synth’, as a portmanteau
of the two boundaries of the problem space, beginning in
the real world and ending in a synthetic, research-tinged,
synthetic approximation of that reality, with signifi-
cant flexibility to bounce back and forth with question-
ing between both. Bridging gaps between what is real
and what might be usefully synthetic raises questions of
authenticity, and so we also discuss how one might vali-
date embodied locomotion in our pipeline.

Briefly, the paper is organized as follows. First, we pro-
vide background material to motivate the work and to
set it in the context of existing scholarship. Second, we
describe an observational instrument to obtain ground
truth data from real world locomotion embodiment in
outdoor settings, chiefly from pedestrian encounters in
busy urban streetscape scenes. This involves both first-
person and third-person observation with qualitative
behavioral coding as well as sensor-based measurements.
Third, we introduce a live experimental instrument for
collecting motion capture data from real people in a stu-
dio setting, mocked-up to mimic the observed real-world
scenes. Fourth, we detail a computational model designed
to facilitate representation of the observations, qualita-
tive data, and empirical measurements in a synthetic and
simulation-based representation of the observed scenes,
for which we have many (highly-finesse) dimensions of
scale and experimental control (Fig. 1). This simulation
is based on relatively strong agents (Franklin & Graesser,
1997), i.e., decision-making and situationally driven finite
state machines that are developed for a match to real-
world and theoretical behaviors (Torrens, 2010b). Fifth,
we illustrate a live experimental scheme to immerse real
human users directly in the simulation via virtual real-
ity immersion with paired real-time telematics of user
states. We show that this virtual instrument can be used
to generate locomotion and embodiment scenarios for
which we would not otherwise have experimental control
in real-world settings (particularly those involving close
encounters with fast-moving vehicles). Sixth, we describe
a series of tests, imposed on the model environment, on
user behavior, and on pairings between the two. The aim
of these tests is to assess whether Sidewalk2Synth can
faithfully reveal realistic user behaviors. Our tests show
that this is the case, and on this basis, we examine some
preliminary use-case scenarios, based around examining
social embodiment (to peer and group effects) in road-
crossing behavior. We conclude with some commentary
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Fig. 1 The main steps in developing the Sidewalk2Synth pipeline flit between theoretical concept-development, fieldwork to test those
concepts in natural settings, data science to add value to observational data, experiments to add new data by motion capture, development
of virtual and agent models, run-time development for virtual reality hardware, simulation scenarios with recruited human subjects, data output,

and trajectory analysis

on future work and the implied implementations of our
experimental instrument for locomotion science. The
general flow of activity in developing Sidewalk2Synth is
illustrated in, and details are provided throughout the
remaining text of the paper.

2 Background

Typically, embodiment evokes physical considerations
of how people connect, through touch and sensation, to
things around them. By extension, one can straightfor-
wardly consider how people might project that physical-
ity and alter their physical behavior to avail of tangible
connections or to avoid a contact. Similarly, one might
embody their interactions to their surroundings to signal
a physical action, through choreography or non-verbal
communication, for example (Andersen, 2008). There
are a variety of disciplinary considerations of embodi-
ment that are pursued in academic discourse (Simon-
sen, 2013). In embodiment, sensation and sensing are
generally framed as being ego-centric, in that embodi-
ment can come from an individual’s interpretation of
different dimensions of streetscape character (Crouch,
2000). Ideas about environmental embodiment are well
established, and generally center around the idea of affor-
dance: what one’s physical embodiment enables you to
do and avail of (Gibson, 1950, 1966, 1979). In some ways,
we might usefully consider this as opportunistic embodi-
ment, raising questions of what circumstances establish
opportunities for embodiment, and when they present
how those opportunities might connect with a pedes-
trian’s behavior. This is a productive strain of reasoning
because locomotion brings pedestrians into ever-shifting
opportunities as encounters. Increasingly, embodiment
is also considered as a property of psychology, especially

as a factor in cognition (embodied cognition) (Adams,
2010; Anderson, 2003; Clark, 2008). Sub-themes include
the role of embodiment in shaping emotional behav-
ior (Michalak et al., 2009) and attachment, for example
(Davidson & Milligan, 2004). Embodiment can also be
interpreted through the lens of social psychology (social
embodiment) (Goldman & de Vignemont, 2009; Lindb-
lom, 2015; Meier et al., 2012) and sociality more gener-
ally (Niedenthal et al., 2005). The material conditions that
convey or afford embodiment may be flexibly considered,
as connections in a cyberspace (Dodge & Kitchin, 2005),
transactions with media (Krishna & Schwarz, 2014),
or even encounters that are curated formally through a
defined user experience (Dourish, 2001) or as compo-
nents of computing (Schick & Malmborg, 2010). Gener-
ally, these come under the theme of embodied interaction.
Within each of these embodiment disciplines, one can
then consider particularly typologies of embodiment.
This is very well-covered by Ziemke (2013), who outlines
six approaches to typifying embodiment. For the pur-
poses of this paper, we deal with three of them. We enter-
tain the notions of “physical embodiment” as a tangible
form of lived interaction; of “historical embodiment”
as the accumulation of knowledge, skill, mannerisms,
habits, and norms developed from prior interactions;
and of “social embodiment” as embodiment with social
sensation.

Here, we introduce our own approach to embodi-
ment, which retains connections to each of the Ziemke
(2013) concepts. We reference this as embodied locomo-
tion, and we consider it with application to the domain
of streetscape science. Locomotion and embodiment are
closely coupled in streetscape encounters (Middleton,
2010; Shaw, 2015). We consider that when people move
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in busy physical settings or in crowded social condi-
tions, their embodiment shifts rapidly, flitting from one
encounter to the next through dynamics of action, reac-
tion, interaction, transaction, and even proaction. Exam-
ining the “when?’, “where?’, and “with-whom?” of these
processes these shifts can potentially be incredibly useful
in explaining potential reasons “why?”. Revealing empiri-
cal properties of embodied locomotion to settle such
questions is a challenge with many dimensions of consid-
eration. First, embodiment is a highly personal phenom-
enon (Cresswell, 1999). Given the considerable number
of people and events that pulse through a streetscape,
individuality of embodiment invokes the law of requi-
site variety (Ashby, 1958) at burdensome scale. Second,
embodiment, especially while moving, can unfold over
very fragile, delicate, and fast-moving pockets of space
and time, as fleeting encounters that are transitory even if
they are significant (Crouch, 2000). Third, the context of
embodiment can be difficult to generalize from one set-
ting to another (Middleton, 2010). Consider, for example,
how you would embody yourself on a walk that is routine,
as compared to a new streetscape that you might visit as
a tourist. Fourth, embodied phenomena easily assume
properties of complex adaptive systems (Torrens, 2010a,
2015b), with all of the thorny issues of non-linearity that
usually entails, and that can easily eschew tractable codi-
fication in scientific inquiry.

Given these challenges, models of embodied locomo-
tion are a logical choice for experimenting with ques-
tions of “when?’;, “where?; “with-whom?’, and “why?”
But, existing model approaches generally take on coarse
representations that are ill-suited in extension to micro-
scales beyond their original design (Torrens, 2014a,
2014b). This relates to longstanding discord between top-
down models and bottom-up models (Torrens & Nara,
2013; Torrens et al., 2013) on points of ecological fallacy
(Openshaw, 1984; Wrigley et al., 1996), modifiable areal
unit problems (Openshaw, 1983), and laws of requisite
variety (Ashby, 1958). New theoretical ideas—chiefly
Non-Representational Theory (NRT) (Thrift, 2008),
which advocates for examination of how geographies and
other disciplinary realities are generated through encoun-
ter, rather than reacting to representational formalisms—
have emerged to tackle some of the conceptual challenges
of framing embodiment, but they are overwhelmingly
conceptual in exposition (Torrens, 2024). Nonetheless,
many of these concepts are actionable as models, particu-
larly those from early success in advancing NRT ideas of
mobile embodiment (the so termed “mobilities turn” in
geography and sociology) (Edensor, 2012; Sheller, 2017;
Sheller & Urry, 2006). Matching model support could be
very helpful in buttressing this conceptual work, and this
is partially what we aim to present in this paper.

Page 4 of 36

Inevitably, questions of data arise when discuss-
ing modeling embodiment. Unlike trip-type mobilities
research (He et al, 2015; Hong et al,, 2017; Krumm &
Horvitz, 2007), which can poll from large archives of dis-
crete location-based check-in data and activity tags (Liao
et al., 2024), embodied locomotion requires, in essence,
that the continuum of embodied behavior be sampled
and that those samples cover encounters at parity with
lived experiences. By extension, embodied locomotion
has more to do with affective computing than data sci-
ence (Clough, 2008; Griffin et al., 2007; Picard, 2000; Tor-
rens & Griffin, 2013; Torrens et al., 2011, 2012). Looking
to the future, it is also feasible to consider that humans
are being joined on streetscapes by moving machines.
These machines are also embodied (Chrisley, 2003; Dour-
ish, 2001; Duan et al., 2022), with the result that human—
computer embodiment in locomotion is also a near-term
consideration. Consider, for example, how semi-auton-
omous vehicles and robots that are tasked with mov-
ing through streetscapes using synthetic perception and
sensorimotor control (Bojarski et al., 2016; LeCun et al.,
2005), which must sense and make sense of streetscape
dynamics to effect motion that is efficient and compli-
ant with situational norms of those streetscapes. At face
value, this begets consideration of a form of streetscape
Al one which could share the same viewsheds as pedes-
trians and drivers and possibly reason about how to
move. Any applications of a streetscape Al, then, would
face the same challenges that NRT addresses in empiri-
cal application: heavy individualization and contextual-
ization that would render both training and application
of Al difficult to resolve (Guo & Liu, 2024). There is con-
ceivably an opening in encounter-based modeling for an
adjacent consideration of hyper-local situational aware-
ness for streetscape Al Ideally, this situational awareness
would maintain existing pathways for synthetic percep-
tion (particularly the impressive benefits that can be
garnered from deep learning on visual data drawn from
streetscape viewsheds), while also facilitating reason-
ing on the very individualized, dynamic, and non-gen-
eralizable context that enliven and animate streetscapes
in everyday life. With this reasoning, one quickly jumps
toward considerations of modeling embodied locomo-
tion as a form of autonomous machine intelligence (AMI)
(LeCun, 2022). Indeed, it would be straightforward to
argue that the configurator, perception, cost, short-term
memory, and actor modules of LeCun’s (2022) scheme
for AMI could connect to his world model as embodied
locomotion.

Our aims for the Sidewalk2Synth pipeline share some
of the themes being developed for Sim2Real as a tool for
training autonomous driving training (Doersch & Zisser-
man, 2019; Farley et al.,, 2023; Pasios & Nikolaidis, 2024).
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Generally, Sim2Real is delivered as three-dimensional
visual simulations that are used to produce training
data (usually two-dimensional imagery) for autonomous
vehicle Al (usually as deep learning). A handful of Sim-
2Real models has been extended to the task of training
machines for road-crossings, where pedestrian motion
and vehicle motion come into contact, for example,
within contextual factors of crossing spaces and cross-
ing signals. Haoran et al. (2023) introduced a system
for training robot motion control in simulated physical
scenes using Unity 3D. They used indoor scenes without
representation of humans. Ouyang et al. (2018) showed
that image processing could be used to insert synthetic
images of pedestrians into streetscape scenes, which
could be used as training data for vehicle collision detec-
tion routines. A system with similar aims was introduced
by Strauss et al. (2021). Farley et al. (2023) demonstrated
that the infusion of simulated pedestrian data to super-
vised deep learning could increase vehicle’s success in
identifying pedestrian collisions by over 27%. They com-
bined deep learning on synthetic static pedestrian scenes
from the Multiple Object Tracking Benchmark (MOT-
Synth) dataset (Fabbri et al., 2021), as well as real road-
way scenes of pedestrians as a subset of the Cityscapes
dataset (Cordts et al., 2016), “CityPersons” (Zhang et al.,
2017). This represents a distinction from the approach
of Ouyang et al. (2018), in that simulations are used to
generate pedestrians, which are animated in scenes and
taken as screengrabs for training.

Nie et al. (2022) introduced a novel twist on this pipe-
line, inserting virtual pedestrians with unusual, synthet-
ically-generated poses into image-based training data to
account for edge cases in pedestrian detection. Typically,
the synthetic pedestrian simulations that feed such pipe-
lines are abstract in their representation of locomotion
behavior, which is understandable as they focus solely on
pedestrian detection, not behavioral inference. We also
point out the important distinction that such data are
usually static, and do not include movement of pedestri-
ans within the images. Also, synthetic humans are gener-
ally generated for pedestrianized environments, without
ambient vehicles in the scenes. Pasios and Nikolaidis
(2024) recently showed that the CARLA vehicle simu-
lator (Dosovitskiy et al., 2017) can be used to generate
vehicle scenes for Sim2Real pipelines, but again this is
missing pedestrians and vehicles in the same streetscape.
Bucking this trend, however, Vizquez et al. (2014)
showed that data from driving scenes of the Half Life 2
videogame (Valve Corporation, 2004) (which includes
procedurally-generated walking avatars) can be used to
train deep learning schemes for pedestrian detection.

An approach that sits in the same orbit as the ideas
that we propose in this paper was introduced by Yang
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et al. (2021), taking advantage of high-definition map-
ping of urban environments (HD maps (Zhang et al.,
2023)). They introduce an new twist on Sim2Real, with
an interim step of reconstructing synthetic (but frozen)
pedestrians from 64-beam LiDAR data (they used the
ATG4D data set from Yang et al. (2018)), which they
used for subsequent training. Yang et al. (2023) and
Wang et al. (2023) demonstrated that this could also
be done with LiDAR for reconstruction of vehicles and
subsequent insertion of representative (static) models
back into driving scenes. In essence, the method dis-
tills into a sort of mixed reality approach to generating
more useful training scenes for autonomous driving
algorithms. Work developed by Priisalu et al. (2021)
is closely aligned in objectives to our paper. Priisalu
et al. (2021) endeavored to build a “semantic pedestrian
locomotion (SPL)” (p. 2) agent that uses reinforcement
learning to produce motion control that is semanti-
cally related to a given scene. They developed SPL for
LiDAR directly: agents appear as point clouds and
move through synthetic LiDAR scenes, which match-
ing synthetic vehicles may react to. A critical point,
with respect to SPL, is that the agent is supplied with
a complete map of the scene a priori. In other words,
the trajectories of the agents are reconstructed (using
geometry) rather than arriving as the product of behav-
ioral agency. The reinforcement learning policy is
derived from OpenArls Generative Adversarial Imita-
tion Learning (GAIL) (Ho & Ermon, 2016), which has
also been used for generating vehicle motion trajec-
tories (Bhattacharyya et al., 2022; Choi et al., 2021).
A tangential approach is described in Huynh and
Alaghband (2019), but using scene-based Long Short-
Term Memory (LSTM) to provide fencing for a trajec-
tory-driven movement LSTM. A salient point that we
would like to raise is that these pipelines operate with
a great deal of “god-level” information, in the forms of
complete views of scenes, geometric details, and geo-
graphic information, and sometimes trajectory priors
of objects in the scene. Their goals are generally based
around “What Happens Next?” type questions, with
vector-based answers as a return, rather than striving
for novel behavioral agency. This is not intended to be
a complaint, rather, we wish to illustrate a distinction
relative to our aimed functionality. Recent approaches
are advancing toward agency from these principles, for
example by building indices of socio-geographic inter-
actions (Bilro et al.,, 2022) from trajectory-indexed field
of view estimates, accessible via Sparse Motion Fields
(SMFs) (Barata et al., 2021) or from state data that can
be garnered from a given scene (Zhang et al., 2022).
Our approach to Sidewalk2Synth, we reason, carries
these promising trends forward in some new directions.
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There has been quite a large volume of recent activity
in developing Vision-Language Models (VLMs) that are
trained on streetscape and pedestrian scenes. For exam-
ple, the Text360Nav system was developed to provide
navigation text prompts to users of 360 degree cameras,
to assist in mitigating visual challenges and distractions
when walking (Nishimura et al., 2024). It was demon-
strated on five hours of video data from New York City
and Kanto, Japan. A VLM for pedestrian attribute rec-
ognition (PAR) was introduced by (Ngo et al., 2024) to
essentially marry (through multi-modality) a human-in-
image detector with a VLM, using Mixture-of-Experts
(Yuksel et al., 2012) to establish consensus (CrossPAR).
Wang et al. (2024) developed a related pipeline (spatio-
temporal side-tuning) with concatenation of visual and
textual tokens in a fusion transformer (Vs et al., 2022).
Yang et al. (2024) introduced the Prompt-driven Seman-
tic Guidance (PromptSG) scheme, to make better use
of the implied meaning of text prompts to the VLM on
input. Side-tuning, PromptSG, CrossPAR, and the related
SequencePAR approach developed by (Jin et al., 2023) all
make use of the Contrastive Language-Image Pre-Train-
ing (CLIP) LLM to associate images with query tokens
that can accept text prompts from a traditional LLM
framework. For example, Jin et al. (2023) use Sequen-
cePAR to generate text data on pedestrian sex, age, and
clothing. Generally, VLM approaches share some of
the front-end of our Sidewalk2Synth pipeline, but the
end product is quite different in form and distinct in its
goals. VLMs usually begin with images of naturalistic
scenes, either drawn from online video repositories, col-
lected by researchers, or in some cases acquired from
streetside robots. Imagery is subjected to convolutional
filters and artificial neural networks for deep learning
on the features that are extracted by convolution, and
image regions that are matched to pertinent urban and
pedestrian features. As we will show, we adopt a related
approach at the front stage of Sidewalk2Synth. For
VLMs, the deeply-learned data are then passed to a large
language model (LLM), which is tasked with describing—
in text—what elements of the scene could be salient to a
user. LLMs such as BLIP (Bootstrapping Language-Image
Pre-training for Unified Vision-Language Understand-
ing and Generation) have been shown to be well suited to
pedestrian and street tasks, for which there is often a lot
of shifting dynamic detail to consider. We note that, first,
the output for VLMs is scene-based: most VLMs aim to
describe (by modeling in a linguistic frame) a holistic
scene. Usually, they aim to produce contextual under-
standing of a scene’s environment (Song et al., 2025).
Any behavior would then be inferred from that environ-
ment (e.g., a zebra crossing is for pedestrian movement
across roads). This can approximate behavior through
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tokenization, but it essentially involves matching a text
class to an object class. Second, we note that the output
of VLMs is usually text, specifically a single text descrip-
tion (e.g., that the image contains “a group of people
walking around with umbrellas’, (Nishimura et al., 2024,
15,786)). Some innovative work has been accomplished
in outputting trajectories, using the LG-Traj approach
(LLM-Guided Trajectory) (Chib & Singh, 2024) from
VLMs. LG-Traj takes motion cues from deep learning,
couples them with learned trajectories from bounding
box tracing between images, and predicts future motion
in the next few image frames by image extrapolation (not
by behavioral modeling we should note). LG-Traj outputs
a textual description of what it thinks the trajectory will
be, e.g., “According to the given set of coordinates, the
motion patterns is a standing still motion” (Chib & Singh,
2024, 6). The VL-TGS approach of (Song et al.,, 2025)
aims to enable maples navigation by robots, using LIDAR
data in conjunction with VLMs for scene understanding.
In this case, the trajectories that are suggested by LiDAR
localization and mapping are down-selected with the
assistance of VLM prompts that decide relative travers-
ability as guidance to robot motion planning. A variation
of VL-TGS is shown by (Kong et al., 2025), as “autospa-
tial’, which includes some contextual details of pedestrian
encounters by robots in a similar motion planning pipe-
line. Autospatial will output pedestrian-relevant naviga-
tion details from the image map of the scene, e.g., “The
pedestrian is slightly to the right of the robot, at a very
close distance. The pedestrian is moving towards west.
(Kong et al., 2025, 3). The robot can, then, elect move-
ment rules that relate specifically to pedestrian encoun-
ters. In each of the approaches mentioned above, the
“model” in a VLM is a language model: it essentially seg-
ments a visual image, bounds and frames objects within
it, and classifies them to well-trained data sets (or user
annotations). The end-sequencing of the relative arrange-
ment of those results is handled by the LLM. LLMs are
very different to agent-based behavioral models. Given
image-recognized objects, their counts, which side of
the image objects appear on, and what their object clas-
sification is most probably to be, the LLM outputs some
textual description. This is a fantastic accomplishment,
which could be useful in providing Al-type assistants
for navigation, for assistive technology for pedestrians
with visual challenges, and for quickly providing input to
driver awareness systems in vehicles. There are, however,
some doubts about the utility of VLMs beyond recogni-
tion tasks. For example, Wang et al. (2024) investigated
whether VLMs could support human gesture recog-
nition and found them to be unsuitable for the task.
Huang et al. (2024) cautioned that VLMs have problems
in conceptualizing and communicating distance-based
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and motion-relevant relationships between pedestri-
ans and vehicles: a task that is critical for our applica-
tions to streetscape phenomena. What we are trying to
accomplish is quite different than recognition, and our
approach is thus very different than that of VLM. We
aim to build a behavioral model of the scenes that we
study, and to translate those behaviors into agent-based
rules that can form the basis of what-if simulation. In this
sense, the back-end of our pipeline and its outputs depart
very significantly from the VLM approach. Our approach
is capable of polling objects from images by deep-learn-
ing, but we then attempt to simulate (not just describ-
ing with text) how they “work together’, geographically
through space—time action, reaction, interaction, and
transactions (social affordances, gestures, body language,
etc.). Notably, our approach feeds deeply-learned insight
into agents, and not into tokens.

3 Observing and measuring embodied locomotion
in real-world bouts of encounter
The Sidewalk2Synth pipeline begins on real streetscapes,
with real people, doing real things, in real context (Fig. 2).
We are largely interested in the factors that embody peo-
ple in locomotion on, across, and through streetscapes,
and so we established an observational protocol to col-
lect data on embodied streetscape encounters that come
into being during pedestrian locomotion. Addition-
ally, the observational protocol is designed to build a

Nigh

Suburban

Dense urban
Fig. 2 A selection of observation sites around New York City’s dense central city and outlying suburbs
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typology of those encounters, and then where possible to
add measurements and valence to them. We approached
this through (1) fixed site observations on streetscapes
(Fig. 3), and (2) immersive first-person video diaries of
pedestrians while engaged in embodied locomotion. In
both cases, the data that were produced were subjected
to subsequent analysis to build contextual signals from
the encounters. Our data collection replicated several
computer vision and deep learning schemes used in
autonomous systems, which use sensor modalities that
match equipment commonly used by vehicles and robots
for artificial perception (e.g., simultaneous localization
and mapping (Sun et al., 2023)). Sensed observations and
measurements then became inputs to our motion control
models and simulations in a subsequent step.

We engaged in a long-term observational study of
streetscape sites around New York City (downtown and
suburbs) over a period of a 18 months, collecting ~ 1,400
observations of streetscape encounters at 35 different
roadside crossings, with different physical environments
and activity profiles (see for a sample of the observation
areas, which vary by urban design, architecture, urban-
ity, crowding, lighting, weather, on-street activity, etc.).
At each site, we built an atlas of streetscape conditions
to include site factors, physical configuration, civic infra-
structure, weather and time of day conditions. The atlas
was codified to a shared Geographic Information System
(GIS). This was supplemented with 3D data acquired by
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Person 2
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-7

Person 1

Person 3

Fig. 3 Top: hand-coded labelling of motion parameters in real-world settings. Bottom: LIDAR measurement of spacings and timings in busy motion

scenes

LiDAR for sequences of streetscape activity, which gen-
erated allocentric (thing-to-thing) distance measures and
timing (to sub-centimeter, sub-second resolution). The
census was built for individuals, as well as dyads, groups,
and crowds, as well as single vehicles and collective traffic
phenomena. To accommodate sensor platforms that are
used in vehicle and robot autonomy, we additionally col-
lected RGB video footage from fixed platforms.

To this base, we added hand-coded observation data of
streetscape encounters, itemized, classified, and meas-
ured using a modification to the Interpersonal Assess-
ment (IPA) framework (Torrens & Griffin, 2013). We
first established a set of candidate motion factors in a
pre-survey round, followed by a settled set of factors in
a survey round, during which we also ascribed valence
per-factor. In coding locomotion and embodiment fac-
tors, we focused on individual factors of demographics,
time geography, ambient awareness, speed, ambulation,
object use (including phone use), and risk-taking (when
crossing roads). We also coded for site-specific factors of
weather, crossing signals, vehicle lanes, and pedestrian
crowding. At each observation site, a trained team of
socio-behavioral observers marked-up encounters using
a modified Interpersonal Process Code (IPC) on a tablet
device (Griffin, 2018). These data were fused to the com-
mon GIS (Griffin et al., 2007; Torrens et al., 2011, 2012).

First-person (immersive and ego-embodied) data were
collected by human participants that were recruited to
wear a chest-mounted camera with a high-resolution

GPS and networked smart watch while engaging in
routine streetscape activities. We collected data over a
period of 18 months, for a total of 242 h of immersive
video data (Torrens & Kim, 2024b). Taken in totality, the
immersive observation data presents a first person record
of embodied locomotion encounters on streetscapes
around New York City (both downtown areas of New
York as well as outlying suburban locations), across a
range of encounters across dimensions of place, built
environment, physical setting, time of day, urban activity,
season, and events. We also collected participants’ GPS
traces (and sub-trajectories) for these encounters while
they were in locomotion.

Collectively, then, the fixed observations (atlas, census,
coded encounter) yielded a set of initial conditions for
establishing streetscapes by site type, by time of day, by
crossing scenario, and by social environment. To sample
locomotion through sites, we relied on immersive data.
Together, this constitutes the first “sidewalk” portion of
Sidewalk2Synth, essentially derived from raw data.

To supplement this, we then added machine-inter-
preted information on the same scenes. This added
value to the encounter data but also had the advantage
of allowing us to look at the sorts of sensed realities that
might be interpreted by embodied and mobile machines
in streetscapes (vehicles and robots). We ran the first-
person and third-person video footage through machine
learning routines to automatically label scene objects
(Fig. 4). We used YOLO object detection (Redmon et al.,
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Scene segmentation and labelling (Defectron2)

Object identification and tracking (YOLO)

Fig. 4 Machine learning motion details from first-person video footage

2016), and OpenPose (Cao et al., 2018) and Detectron2
(Wu et al,, 2019) pose detection and motion skeleton
extraction, to detect and frame poses for humans that
were segmented and identified in the scene. We then
used a customized scheme to estimate actions from those
poses and to ascribe three-dimensional bounding boxes
for pedestrians and vehicles. We also deployed DensePose
(Giler et al., 2018) to build pseudo-meshes for pedestri-
ans that resulted. To optimize machine learning, we ran
the analyses on a customized Singularity (Kurtzer et al.,
2017) container on our local high-performance comput-
ing cluster.

Our observations of real-world motion on streetscapes
revealed the key factors that we considered in our model
and simulations. We noted key differences in locomotion
relative to different configurations of group behavior, and
people’s embodiment to other pedestrians in very close
proximity ahead of crossing.

1. People moving as part of a deliberative dyad or group
of more than two were much more likely to either not
check their surroundings (particularly when crossing
the road), or to rely on incorrect checks (e.g., looking
in the wrong direction when facing oncoming traffic).

3D bounding people and vehicles (custom scheme)

2. Those in dyads and groups also tended to move more
slowly than people moving as individuals. People
moving in groups were also less likely to be using a
phone than those moving as individuals.

3. We also observed differences in motion due to ambi-
ent pedestrian and vehicle traffic. For relatively placid
motion scenes, for which there was relatively low
foot and vehicle traffic, we saw that people moved
more slowly when crossing roadways and that
they were more apt to obey crossing signals com-
pared to pedestrians moving in comparatively busy
streetscape scenes. Colloquially, this suggests a meas-
ure of relative care in motion in low-density scenes.
In busier settings, people were observed to move
more quickly and with less care to crossing signals.
We attribute this to pedestrians either conforming to
peer norms in a temporary crossing group (Pfeffer &
Hunter, 2013), switching from individual locomotion
to engaging in group movement (Coleman & James,
1961; Fernandez & Deneubourg, 2011; Sperber et al.,
2019) behavior by temporary “flocking” (matching of
velocity, heading relative to nearest-neighbors) (Bikh-
chandani et al., 1998; Lukeman et al., 2010; Reynolds,
1993), or pedestrians feeling that they had the cover
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of the crossing peloton while moving (Das et al,
2005; Faria et al, 2010; Harrell, 1991; Rosenbloom,
2009).

Based on these observations, we resolved to estab-
lish experimental simulation scenarios that would per-
mit us (1) to vary the number of crossing pedestrians
to include dyads and groups; (2) to vary the ambient
pedestrian density; and (3) endow agents with vary-
ing care and risk-taking strategies. As we will discuss
later in the paper (Sect. 5.2.1), these factors converge
conceptually to topics of peer effects (Pfeffer & Hunter,
2013) in locomotion (Gorrini et al., 2014) and social
embodiment (Meier et al, 2012; Niedenthal et al.,
2005).

4 High-fidelity motion reconstruction by motion
capture

In outdoor observation, we learned that people’s man-
nerisms while in embodied locomotion can provide
information of their behavior: indicators of motion
intent, decision-making, and actions that connect to
“enactable” attributes of that motion as future steering,
velocity, and stopping rules. In our coded observation,
we also noted particular mannerisms that we were able
to associate with embodied locomotion.

+ Head-checking as a signal of people’s interest in and
awareness of ambient conditions,

+ Hesitation as an indicator of reassessment of loco-
motion once its embodied effects were confirmed or
challenged by next steps,

« Ambulation (of body extremities, usually swung in a
particular style) as a motif of locomotion,

« Encumbrance when pedestrians were carrying or
pushing/pulling objects, and

+ Leaning as a mark of impending locomotion and
desired or considered embodiment (Fig. 5).

Head-checking

Fig. 5 Examples of mannerisms for different locomotion actions

Ambulation
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We coded our observations directly for these manner-
isms when surveying natural locomotion scenes. This is
exactly the sort of high-resolution detail that we hope to
add to the simulations. We reason that body language
and other nonverbal communications (NVC) signals
(Andersen, 2008; Collett & Marsh, 1981; De Gelder, 2006;
Ekman & Friesen, 1981; Kudoh & Matsumoto, 1985;
Marques et al., 2025; Mehrabian, 1968; Scheflen, 1972),
specifically, can serve as strong (and reliable) indicators
of underlying behaviors (Torrens, 2014a, 2014b, 2016b,
2018a; Torrens & Gu, 2023). Further, we propose that
NVCs can help to fine-tune agency in our models and
simulations in ways that allow embodied locomotion to
be embedded synthetically in simulation, especially in
mechanisms that human users of the pipeline can inter-
act with in virtual reality, with verisimilitude that matches
their embodiment to real world streetscape encounters.

To examine NVC factors further, we examined the
nature and use of mannerisms with motion capture in
two methodologies. First, we processed first-person
and third-person videos that were collected during our
observational fieldwork through a deep-learning scheme
for pose detection. We used OpenPose (Cao et al., 2017,
2018) to build skeletons of human motion (body lan-
guage as well as gaze direction) from partial affinity fields.
The procedure involves segmenting video for the pres-
ence of humans against a given background scene, then
extracting partial affinity fields, and using those fields to
estimate body parts ahead of building a graph-based skel-
eton of those parts as an estimated pose (Fig. 6). Deep-
learned poses were used to index general sets of motion
behavior to match the hand-coded observations from
our fieldwork. In several instances, we were also able to
reconcile distances and timing for these motions using
cross-indexed LiDAR observations.

Second, we recruited human participants to engage
in motion exercises in a studio mock-up of a physical
streetscape (Fig. 7), using marker-based motion capture
to collect data on the positioning and timing of their

Leaning
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First person video of busy motion scene

Human body segmentation from scene

Body part segmentation from scene as partial affinity field

Fig. 6 Machine learning poses from first-person video footage

body movement at very high resolution (centimeter-level
localization and up to 800 Hz in timing), each indexed to
action states as well as to motion velocities. Moreover, we
were able to collect motion data for different dyads and
groups (up to ten people sharing a session) and for differ-
ent motion contexts (crossing a road, using a phone, nav-
igating through a crowd, participating in unidirectional
flow, interrupting predominant pedestrian flow, etc.).

Motion capture by pose detection on video is useful in
isolating and delineating rough approximations of human
poses in locomotion, and these can further be classified
into coarse locomotion actions by automated means.
Deep learning to accomplish this can be run for large
crowds of people, although occlusion problems will per-
sist for humans that are partially or fully occluded in the
scene. Video-based motion capture is relatively “cheap”
in researcher involvement. In section 11, we show that
it can be fully automated on edge devices which can be
placed close to motion scenes such as sidewalks (Potdar
& Torrens, 2019).

Our studio-based motion capture produces very high-
resolution and high-fidelity motion data. However, the
behaviors that we can capture are limited to indoor sce-
narios. We approximated outdoor locomotion by asking

Resolved body graphs

participants in the studio to move as they would nor-
mally do in the real world, and by inviting them to move
in reaction to scenes of real-world urban scenes that were
projected onto a large screen next to them. Ultimately
indoor behavior is a proxy for what would really occur
in the messy context of an urban scene. Nonetheless,
studio-based motion capture produces real locomotion
data, and we were able to collect studio data for groups
of interacting people (simultaneously, ten at a time
at~400 Hz) to reproduce dyadic and group scenarios, as
well as small bouts of pedestrian flow.

As we will discuss (Sect. 5), we transferred the motion
capture data directly to agent-automata in simula-
tion, so that agent-based pedestrians would move with
realistic mannerisms and body language. Real human
user-participants can then be immersed in the simu-
lation (see Sect. 7), which may then present as open to
social embodiment with these mannerisms on agents.
Studio-based motion capture data can be used directly
to represent agent motion. The deep-learned (video-
sourced) pose skeletons are lower in resolution than the
(motion-captured and resolved) skeletal rigs that we
use in our agent-automata model are, and so we do not
transfer video-learned poses directly into our simulation
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Fixed (environmental) camera view

Mobile camera
referenced in the
Cartesian space

Synchronized
time-stamp

Dynamic body-
space graph

Simultaneous motion capture for a group of five people, walking as individuals (left) and as a dyad (right).

Fig. 7 Studio marker-based capture of high-resolution and high-fidelity motion

scenarios, although, as we will discuss in Section, these
video poses can be used in end-to-end versions of the
pipeline that are designed to run outdoors in real-time.

5 Simulating pedestrians as automata
with strong-agency Al

The “Sidewalk” components of Sidewalk2Synth are
treated using observation and reconstruction as dis-
cussed in Sects. 3 and 4. These are designed to feed
insight to a second half of the pipeline, the “Synth” com-
ponent, which is tasked with modeling those obser-
vations and producing synthetic representations of
streetscapes (both physical and social) in the form of
simulations. Users of the system will directly interface
with the synthetic simulation, embodying themselves to
the streetscape encounters and environments that are
represented. Our intent, in designing the synthetic com-
ponents, is to produce high-fidelity parity with our real-
world observations, such that the system can evoke real
embodied locomotion and related behavior from users.
A first step is to generate synthetic pedestrians, which

will provide both physical (collision objects) and social
(NVC counterfoils) environments. In Sect. 6, we describe
Al for vehicles and traffic. The integration of the human
(pedestrian) automata and vehicle (driver) automata in
a decision tree framework is shown in Fig. 8. The data
architecture that feeds the decision tree is illustrated in
Fig. 9.

Embodied locomotion is intertwined with lived expe-
riences that are acted out with sensation and physical
and social contact, with the exchange of mannerisms
and depth of feeling that implies. Sidewalk2Synth would
therefore benefit from fidelity in its congruence to real-
ity: the things in the simulation should behave as they
would in their real-world counterparts. Synthetic vehi-
cles should move as they do on real roads, around real
crossings, and with faithful response to pedestrians. Sim-
ilarly, human automata must take on agency that is faith-
ful with respect to real behavior, including both rational
and often irrational action to dynamic conditions as they
unfold around them. There are cases when substitutes for
motion (such as using particle physics in lieu of human
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locomotion) could be useful in a simulation effort, e.g.,
if movement is just an input to a particular simulation
system as flow or occupancy counts (Johansson et al.,
2012; Treuille et al., 2006). However, for our purposes,
locomotion is the output, and so we need realistic behav-
ior rather than abstractions. Sidewalk2Synth would also
benefit from maintaining congruence to reality in its ver-
isimilitude. Because it is designed to be used by human
users as a way to experiment with their (real) embodi-
ment, Sidewalk2Synth should evoke realistic behaviors
from its users. Specifically, it should conjure realistic
embodiment to both social and physical context. Users
of the simulation should feel compelled to engage a full
set of their motion skills, mannerisms, and habits, and
they should react with distance and timing that matches
counterpart context in reality. If the simulation is veri-
similar, it could be useful as a means for testing against
real-world parameters.

We approached the first topic of congruence—by fidel-
ity—using strong agents. The second facet of congru-
ence—by verisimilitude—is tackled using mobile VR
technology (mVR) designed to transpose real human
users directly into the simulation as mobile bodies. In the
text that follows, we discuss the design of agent-autom-
ata; transposition of real human users into the simulation
is detailed in Sect. 7.

5.1 Weak or strong agency for motion control?

The use of weak agents is a commonplace approach in
applied simulation, where the intent is to produce either
visual or statistical movement patterns, with wvalid-
ity of their flow usually assessed, in aggregate (crowd
volume) form (Torrens, 2004). Examples include the
use of physics-based schemes to generate crowd flow
dynamics based on force-based heuristics (Helbing,
1992; Helbing & Molndr, 1995) or continuum mechan-
ics (Henderson, 1971), information search schemes
that can generate dynamic density patterns on grid-
ded spaces (Blue & Adler, 2001; Galea et al., 1996), or
graph and roadmap structures that can generate local-
ized activity patterns around particular geometries (Sud
et al., 2007, 2008). Dedicated motion controllers are also
widely used, including vector-based schemes (Reynolds,
1993; Sun et al,, 2023) and reverse velocity approaches
(Guy et al,, 2009) that can be particularly helpful in pro-
ducing localized (but procedural) motion for collision
avoidance. Similarly, a range of inverse and forward kin-
ematics schemes are available for generating realistic-
appearing ambulation over short bursts of stride-scale
movement (Badler et al.,, 1987, 1991, 1994), as well as
patch-based motion capture recall schemes (Hyun et al.,
2013; Lee et al., 2006), and these techniques are usefully
deployed in computer animation and special effects.
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Using combinations of these schemes—usually hando-
vers among algorithms and heuristics at particular scales
of motion—can produce very realistic-appearing motion
and movement, with pattern dynamics that hold valid-
ity against real-world motifs. Moreover, several of these
approaches can be run with significant scale advantages
so that large mobile crowds of walkers can be simulated
(Torrens, 2014b), often with individual variance provided
by parameter files that can be paired to real-world cen-
suses and contexts.

Although there are many exceptions to the follow-
ing statement, we would assert that for the most part
such schemes are weak in their fit to actual locomotion
behavior. They look realistic, but they do not arrive at
that realism from fidelity to the real world. This is appro-
priate for the usual applications to transport systems or
planning and policy support for crowd flow management
(Johansson et al., 2012; Pauls, 1984; Sime, 1995; Tubbs &
Meacham, 2007). But it is problematic if you ask human
participants to embody themselves to the simulations.
People can easily spot fake behavior, and when they do,
it does little to evoke commensurate embodied interac-
tion. In other words, many existing approaches (which
we reiterate are never intended for virtual simulation,
or for testing embodiment, and so this criticism is just
a scientific one) often focus on generating patterns and
processes of applied motion and movement scenarios,
rather than attempting to replicate real motion behavior
with high-fidelity. This is fine: real behavior is not in their
remit. They only ever claim weak agency.

An alternative approach could be termed, by contrast,
as strong agency, dealing with generalized Al as a way
to build agency that is responsive to simulation condi-
tions in ways that authentically and faithfully match to
known locomotion conditions and behaviors in the real
world. Strong agency is quite difficult to accomplish, as
a lot is unknown about how people control their motion
in reality, largely because building that understanding can
quickly lead to problems of infinite variation and over-
whelming context dependency. Simulations can help to
build this understanding, but again they must be realistic
and authentic to their real-world, physical companions
to yield answers relative to that reality, which leads to a
circularity problem. We do not claim to have a profound
discovery in this regard: here, we simply state that we
are trying to advance the science at least a little bit in the
direction of strong Al

5.2 Human automata model

We used automata-based models as the Al driver for
synthetic pedestrians. We modeled human automata
on a Geographic Automata System (GAS) structure
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(Benenson & Torrens, 2003; Torrens & Benenson, 2003),
which we index as “G” in what follows:
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from the conceptual literature base (Bower, 2014; Cad-
man, 2009; Sheller, 2017).

G=K, S, Rg, L, R_, N, Ry; where: Rg: S¢ — Sti1, Ry : Ly = Ly, Ryt Ny = Niwp

A state descriptor, K, is used to index whether entities
and objects in the model are able to engage in locomo-
tion. Elsewhere, we have experimented with rule sets Ry
that govern whether something that is usually immov-
able can be brought into motion, e.g., through a forceful
collision (Torrens, 2014b), but here we simply rely on K
as an index state for features of the built environment as
distinct from those that could be mobile. Motion-capable
human automata can read the states of fixed automata
for ease in data-processing, but in the examples that we
show here the K=[fixed] automata were cloistered from
the parts of the state transition tree that permit locomo-
tion. As each GAS is a finite state machine (Sipper, 1997),
our approach of enveloping information to pertinent sub-
sets of automata-to-automata interactions reduces the
computation required to resolve states across the system
in a given state transition update epoch.

The main “work” of G is then performed among rou-
tines {R}, which are used to control locomotion and its
(state) information context, per automaton. Transition
functions Rg, R}, and Ry govern transition between dis-
crete states in packets of change from t—t+1. We dis-
tinguish between three overriding functions. Under Rg,
agent-automata can change general agency states. In
this application, we use states {S} to index pedestrians’
attitudes as we will discuss shortly. Transition functions
{Ry} are used to control different aspects of the human
automata’s perception and awareness. We consider N
as defining different neighborhoods of encounter and
information-gathering that automata engage with (and
embody to) within the spaces that they progress. In this
sense, then, N determines the ego-centric embodiment
space of the pedestrian agent, while streetscape spatial
and space—time progression is governed by R;, such that
different encounters are continually coming into being in
N. N therefore constitutes a shifting set of dynamic infor-
mation that unfolds around automata G. Aspects of {Ry;}
are designed to provide system-wide access to informa-
tion, as in the case of path-planning. However, we also
focus dedicated Ry functions on enabling hyper-local
awareness for automata, specifically intended to provide
information in fleeting moments of space and time that
can inform simulated pedestrians’ snap judgment based
on limited (often proximal and partial) appreciation for
simulation conditions. This model function follows the
idea of primacy in transient encounter over fixture in
geographic representation that is described in NRT con-
cepts, especially rhythmanalysis (Lefebvre, 1992/2004),

Automata control their movement routines via rule-set
R;. Given the significance of locomotion for the appli-
cation sets of Sidewalk2Synth, an expansive set of rules
{R.} are used (these are discussed in detail in Sect. 5.2.1).
We provide ego-location by slipstreaming, i.e., by allow-
ing human automata to cross-register (slip) their position
across a range of different geographies in the simula-
tion, on-the-fly as information flows through their state
transition schemes (i.e., by streaming) (Torrens, 2015c).
Slipstreaming is used to practically embed (and to con-
ceptually embody) automata to 3D built-space represen-
tations (Torrens, 2015a), which we handle in model form
as Virtual Geographic Environments (VGEs) (Chen et al.,
2008; Lin et al., 2015; Torrens, 2015a; Zhang et al., 2007).
VGEs provide cross-functionality between geometry
and GIS, which we then further expand as Virtual Real-
ity Environments (Torrens & Gu, 2021, 2023). VRE serve
as special modalities of VGEs that are delivered to head-
mounted displays (HMDs) with 3D rendering and spatial
audio that users can immerse themselves into.

We consider a wide range of movement and motion
conditions through varied localization states {L}. These
hyper-spaces support localization across different inter-
pretations of geography. These include in a traversal
graph for pathfinding, in a hierarchical waypoint list for
navigation and wayfinding, in vector space for steer-
ing and collision detection, in geometric space for col-
lision avoidance and reconciliation, in body-graphs for
localization of NVCs such as mannerisms and ambula-
tion, and in relational space for gaze dynamics. Given
our intended applications to streetscapes, we based the
static built environment for movement on urban scenes,
which we provided to human automata as GIS data in
planar view. However, we also provided the same data as
geometry (CAD and mesh), as well as graph data (navi-
gation meshes). For automata—automata interactions, we
supplied vector-space data for velocity determination.
Human automata are allowed to geo-position themselves
within any one or all of these “geographies” as needed,
with the result that they avail of a flexible sense of autom-
ata neighborhood input to inform their transition rules.

We designed the system’s human automata with tiered
spatial agency to represent strong agency at different
locomotion scales. At scales of a city-block, we used
transition rules that account for agent-pedestrians’ gross
movement by path-planning as an R;=[A* heuristic
(Hart et al., 1968). At street scale (four sidewalk segments
within a given city block), we relied on navigation meshes
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to provide human automata with wayfinding capabilities
between given waypoints. Following the approach shown
in Torrens (2018b), we used scaled waypoints with long-
term, medium-term, and short-term goal-locations that
correspond to navigational features of the built environ-
ment (Costa et al., 2011; Cutting et al., 1992; Devlin &
Bernstein, 1995; Evans et al,, 1984; Garling & Gérling,
1988; Raubal & Worboys, 1999; Wang & Cutting, 1999).
For intra-street movement, we first introduced steering
behavior, using combinations of the steering routines
from Reynolds (1999), relying on the pedestrian adap-
tations shown in (Torrens, 2012). However, for colli-
sion detection and avoidance movements that were not
resolvable by steering, we used reciprocal velocity obsta-
cle algorithms (Fiorini & Shiller, 1998; Guy et al., 2009;
Snape et al., 2011; van den Berg et al., 2008; Wilkie et al.,
2009).

5.2.1 Human automata movement routines

We modeled movement on a hierarchical motion
scheme. For each of the (slipstreamed) spaces that have
representation in the model as {L}, we developed a
matching locomotion rule, R to govern automata’s poll-
ing of hyper-local information (N), the behavior that they
marshal to that information, and the spatial structures to
frame this in GIS, VGE, and VRE. In entwining {L} and
N, we build embodiment methodologically in the model.
Conceptually, this follows well-researched concepts from
behavioral geography (Downs & Stea, 1974; Golledge &
Stimson, 1997; Hart, 1987), which indicate that pedes-
trians generally map motion planning to a set of layered
scales (Devlin & Bernstein, 1995; Golledge, 1999; Mark
& Frank, 1996; Siegel & White, 1975). Operationally in
software, it roughly follows the data flow model shown in
(Torrens, 2015c¢).

Motion in trip space by path-planning At trip scale,
pedestrians settle on a route or a route-finding strategy
between an origin and a destination: usually a source
and sink for activity, akin to the anchor point hypothe-
sis in cognitive mapping (Couclelis et al., 1987; Kuipers,
1982; Kuipers & Levitt, 1988). In real situations, this may
take place over a large geographic area, for example, if
somebody is walking around a downtown for leisure, or
the trip could be comparatively short-lived, say from an
establishment to a road crossing. The important point for
locomotion over trip-spaces is that a pedestrian will set-
tle on a destination and will devise a path-planning strat-
egy to get there (Hartley et al., 2003; Huber et al., 2014;
Lenntorp, 1977; Nabbe et al., 2006; Sun et al., 2021). Usu-
ally, this involves a shortest path or some variant, possibly
with additional weightings for paths that preserve views-
heds of the streetscape (Hillier & Hanson, 1984; Penn,
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2003), or for paths with least right-angle turns (Foltéte &
Piombini, 2007; Omer & Kaplan, 2019), for example. We
handle path-planning using the A* algorithm (Hart et al.,
1968) for identifying paths with a minimal traversal cost
(in space and time to destination), which trades off short-
est path (graph) distance from a locomotion origin and
straight-line distance to a destination, and which parsi-
moniously ekes efficiency by planning toward a specific
goal rather than solving for all possible goals in the tra-
versal space. We regard this as realistic because pedestri-
ans on a relatively short stretch of streetscape will gener-
ally have just a single goal in mind (Patla & Vickers, 2003)
and will usually engage in a combined strategy of mini-
mizing space—time distance to that destination, while
preserving streetscape viewshed (Batty, 1997). This latter
point, of preserving visibility of the built environment
is treated in space syntax concepts (Omer & Goldblatt,
2017; Omer et al., 2015; Ryu et al,, 2021), for example.
Again, A* yields a (desirable in this regard) combination
of both destination-oriented goals in locomotion.

Motion in waypoint space by wayfinding Within a
trip, we allow human automata to identify waypoints as
motion-relevant interim features along a planned path.
Again, we follow concepts from behavioral geography
and from psychology that have revealed that walkers
make use of waypoints as interim goals to track progres-
sion along trip paths (Kato & Takeuchi, 2003; Raubal,
2001b; Spiers & Maguire, 2008; Wang & Cutting, 1999).
We relied upon built environment features for our exper-
iments: streetscape curbs, pedestrian crossing locations,
and pedestrian crossing lights. Essentially, these built
features serve as hyper-local landmarks for waypoint-
driven navigation and wayfinding (Caduff & Timpf, 2008;
Evans et al., 1984; Kamil & Cheng, 2001; Omer & Goldb-
latt, 2007; Ruddle et al., 2011). Waypoints were straight-
forwardly represented in VR simulations as observable
features. We also note that built-feature waypoints on
streetscapes serve as important boundaries between dif-
ferent activity spaces on the streetscape (chiefly vehicle
areas, pedestrian areas, and mixtures of the two such as
crosswalks) (Raubal, 2001a). Critically, passage from one
of these activity spaces to another may invoke halting
states for locomotion (Tabibi & Pfeffer, 2003; Torrens &
Kim, 2024b; Zeedyk et al., 2002). For example, Goldham-
mer et al. (2014) showed that specific termination gaits
are used at crosswalks. These locomotion phase shifts
provide (visual) representation of what Schmidt and Far-
ber (2009) referred to as “action intention” (p. 300). With
animation cycles form mocap as NVCs, user-participants
of our system can then (and do) react to these action
intentions as visual signals cast by automata-avatars in
VRE as ambulation, mannerisms, and body language
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signals of movement intent. Importantly, several of these
NVCs such as milling behavior, gaze, and waiting can be
used to represent embodiment to the streetscape. (We
detail this shortly.)

Motion in cluttered space by steering While engaged
in traversing paths and progressing through waypoints,
pedestrians will pursue a tradeoff between a given and
a desired locomotion, as an individualized (perspective-
based) affordance of their localized embodiment to the
streetscape (Raubal, 2008; Withagen & Chemero, 2012).
This matches experimental evidence from psychology
that pedestrians follow retinal and/or optical flow when
moving (Cutting et al., 1992; Matthis et al., 2022). That is,
unless they detect an interfering physical obstacle, vehi-
cle obstacle, or human obstacle, pedestrians will tend to
follow a preferred velocity (Hurt & Kram, 2006). (This
could be leisurely or hurried, and we can code agents to
adopt these policies on a hyper-individualized basis using
{S}.) When faced with the novelty of an imposing obsta-
cle, pedestrians will correct their locomotion, usually
temporarily, to first prioritize negotiation around that
obstacle and second to return to their desired locomotion
(Cutting et al., 1995). In some cases, the originally desired
locomotion (by wayfinding and path-planning) may no
longer be viable given a pedestrian’s destination goals, in
which case they may recalculate their “up-scale” locomo-
tion, i.e., they may engage in motion control at scales of
space and time that are coarser than the immediacy of
the steering decision (Garbrecht, 1971; Garling & Gér-
ling, 1988; Hillier & Hanson, 1984). Importantly, we han-
dle most collision situations primarily through steering.
In other words, pedestrians will try to avoid getting into
a situation in which they must engage collision avoidance
routines (Kitazawa & Fujiyama, 2010; Patla & Vickers,
2003). This is because, first, pedestrians generally avoid
collisions in the real-world as they are socially and physi-
cally unacceptable in most situations (Olivier et al., 2013),
and second, because collision detection in motion con-
trol algorithms is generally more costly (and non-faithful
to real-world motion) in simulation (van den Berg et al.,
2008), it is a quality to circumnavigate in simulation. We
address steering with algorithms that allow pedestrians
to take a planned path and its waypoints and to project
space—time progression along an intervening path, with
the ability to estimate progress between waypoints and
with leeway to speed-up to reclaim lost time should they
need to steer away from an otherwise desired path (Tor-
rens et al., 2012). Steering itself is handled using a variant
of Reynolds’s (1999) steering behaviors for autonomous
characters, which allow for very parsimonious resolution
of steering by seeking and fleeing routines. Space—time
projection is handled using a modification to space—time
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paths from time geography (Lenntorp, 1977), adapted to
work with steering behaviors (Torrens, 2012). The geo-
metric hand-off between source and sink nodes for path-
planning, a graph-space for path planning, embedding of
waypoints as nodes in that space, and the overlay of a rel-
ativistic steering space with distance and time look-ups is
handled by using slipstreaming in a GIS (Torrens, 2015c).
In GAS terms, interchanges in state data are interoper-
able across transition rules {Rg} and localization data {L}
can be co-registered (and translated) between different
layers of L;, L,, ..., L, €{L}. Values of {L} may be stored
with diverse spatial data structures, and spatial data
lookups may provide data access schemes for the location
and (location convention) rule-sets {R;} (Fayyad et al,
1996; Fujimura & Samet, 1993; Samet, 1989, 1990; Tor-
rens et al., 2011).

Motion in collision space by detection and avoid-
ance When different pedestrians employ different
paths, drawing them to the same or to varying destina-
tions, and when pedestrians use individualized locomo-
tion to articulate through space and time, it is inevitable
that they will come into potential collisions (Harrigan,
2005). Generally, steering is enough to resolve these col-
lisions while absorbing a small decrease to space—time
progression. However, there are cases in which density
of activity on a streetscape or multiply-conflicting steer-
ing maneuvers among pedestrians in close proximity
could produce an impending physical collision (Gérin-
Lajoie et al., 2008; Hayduk, 1983). Usually, real people
will detect such collisions and if they are unable to steer
around them, they will engage in collision-avoidance rou-
tines (Basili et al., 2013; Collett & Marsh, 1974; Huber
et al, 2014; Kitazawa & Fujiyama, 2010; Knorr et al,
2016; Lynch et al, 2018; Olivier et al., 2012, 2013). In
psychology, there is evidence that this is an active brain
process for most walkers (Kennedy et al., 2009), which
also has secondary import as social psychology (Aiello
& Thompson, 1980). In brief, this commonly invokes
people’s vision, working in tandem with small adjust-
ments to locomotion in very small bundles of space and
time (Cutting et al., 1995), as brushing motions, twisting
of the body, and sidestepping (Ciolek, 1983), i.e., strong
physical embodiment that directly impacts locomotion
response. In each case, it is usually necessary for a pedes-
trian to come to a stop or near to a stop in their desired
locomotion to resolve the collision. Because there are two
parties involved in the collision, the maneuvers must be
balanced in a dialectic (Olivier et al., 2012). This is well-
treated algorithmically by Velocity Obstacles (VOs) (Fior-
ini & Shiller, 1998; Wilkie et al., 2009) and by Reciprocal
Velocity Obstacles (RVOs) (van den Berg et al., 2008). For
Sidewalk2Synth we use RVOs for collision avoidance; we
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show this implementation in more detail in Torrens and
Gu (2021).

Motion in articulation space by animation cycling Given
a motion plan, put into effect as R; simultaneously across
multiple scales of the streetscape, agent-pedestrians must
then generate realistic body motions to both match and
satisfy that motion. In real life, such motion is highly
individual as gait (Baker & Hart, 2013) and other ambu-
latory factors that shift based on walking speed (Jordan
et al, 2007), ability, and inclination, including many
dimensions of desired walking behavior, skill, energy, and
effort (Chung & Wang, 2010). Evidence from psychology
points to a close coupling between perception (which we
can regard as being situational and embodied) and the
body motion that produces physical locomotion (Kon-
czak, 1994; Pailhous et al., 1990; Pearson, 2004; Salinas
et al,, 2017) (which we can regard as sensory). Walking
behavior may also be contextually dependent upon inter-
personal factors (Cutting & Kozlowski, 1977; Montepare
et al., 1987), the given crowd density in a particular part
of a streetscape (Hans & Hans, 2015), norms of particu-
lar social surroundings (people do not generally sprint
through culturally sensitive areas and sacred spaces),
civic expectations (waiting at a road crossing when the
pedestrian signal indicates “do not walk”), peer pressure
between socially-influenceable pedestrians (Pfeffer &
Hunter, 2013), activity purpose (tourism vs commuting
to school, for example), as well as public rituals such as
yielding behavior in a potential collision, entering queues,
taking turns at doors to establishments, and so on (Mon-
dada & Tekin, 2023). The physical and built conditions
of a streetscape also have obvious impact on gait and
other forms of ambulation that tangibly produce locomo-
tion (Franék, 2013; Thies et al., 2005). At the boundary
between different expected locomotion domains (roads
as a space where one would expect vehicles to dominate;
sidewalks as a space where pedestrians would usually
have leeway), action intentions may be visible in relevant
non-verbal signals. We represent these with specific ani-
mation cycles (waiting by idling at a crosswalk, for exam-
ple as a signal to users that agent-automata are waiting
for a pedestrian signal) (Carol & Roslyn, 2007; Gerus-
chat et al., 2003; Harrell, 1991; Oudejans et al., 1996).
The number of potential factors at play in reproducing
these behaviors in simulation are massive, and realisti-
cally beyond reach in current computer science outside
of inverse and forward kinematics (Tolani et al., 2000;
Zhao & Badler, 1994). In our pipeline, we sidestepped
their implementation with authenticity as transition
rules, and instead we opted for realistic-appearing behav-
iors by using animation cycling (Arikan & Forsyth, 2002;
Safonova et al., 2004), but in real motion capture data.
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Importantly, we stress that animation is only used to pro-
duce the kinematics of walking; all other behaviors that
lead to those steps are from automata Al Specifically, we
recorded motion capture data of real people’s movement
behavior for different speeds of locomotion, different
beginning and halting conditions, and different steering
maneuvers. We then indexed these animations to agents’
velocity in simulation, as well as to particular action con-
ditions (waiting at a roadside by using milling behavior or
idle swaying, for example). We used motion retargeting
(Gleicher, 1998) to adapt motion capture data to pedes-
trian representations of differing sex and height.

6 Vehicle automata model

To investigate motion control at the roadside curb and
during crossing, we also built a vehicle driver model. This
was established using a geographic automata version of
the Intelligent Driver Model (IDM). The IDM (Kest-
ing et al., 2010) provides microscopic driving dynamics,
which collectively can also yield macroscopic phenomena
of traffic. However, our model is open to the introduc-
tion of driver, vehicle, and traffic models and we have also
experimented with the CARLA driving model (Dosovit-
skiy et al.,, 2017; Torrens & Gu, 2023) as well as purely
macroscopic traffic flow models (Torrens & Gu, 2021).
We do not go into significant detail of the driving autom-
ata modifications here and instead we refer the reader to
the original IDM methodology in Kesting et al. (2010).
Our extension of the IDM is discussed in more detail
in Kim and Torrens (2024); Torrens and Kim (2024a,
2024b). For the pipeline experiments that we show here,
we included vehicle models for coupes, sedans, sports
utility vehicles, vans, and trucks, each with different driv-
ing norms and with acceleration profiles that match the
vehicle type (Fig. 10).

7 Instantiating Sidewalk2Synth as an immersive,
traversable virtual reality environment

The final piece of the Sidewalk2Synth pipeline involves
opening-up the system to live embodied locomotion
form real human users. To support this, we first built
a set of VGEs to depict different streetscapes, which
we made accessible via mobile Head Mounted Displays
(mHMD) to user participants (see a viewscreen from
the mHMD as well as a user-participant in the studio
in Fig. 10, at the bottom). The mHMD allowed users
to view streetscapes in three dimensions and to listen
to vehicles with spatial audio. Importantly, the mHMD
enabled users to engage their own natural, physical,
tangible locomotion control to advance through the
VGE and to look around and gaze within the simu-
lated scenes. We enabled this by launching the mHMD
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Traffic patterns (space-time bunching) in the IDM as implemented in our model.
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Mobile HMD view within simulation
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Studio setting for human participant

Y M\ 2

| -

=

Pedestrian signal

Crosswalk

Run-time vehicle

Integration of the IDM with other agent components and simulated streetscape.
Fig. 10 Vehicle agents in the intelligent driver model (IDM) along a model streetscape

in a studio space that users could physically traverse.
Indeed, this locomotion takes place in a physical stu-
dio with one-to-one distance mapping to the VGE
streetscape that is represented in the simulation. Sec-
ond, we coupled the agent-pedestrian and agent-driver
models to the VGE, populating the VR streetscapes
with dynamic (but individual-based), crowd patterns
and traffic patterns. We additionally enabled pedes-
trian crossing signals and traffic signals within the
simulated streetscapes. Third, we recruited cohorts of

real human users to engage in a series of motion con-
trol trials within the VR system. While in the simula-
tion trials, we recorded participants’ visual information
(piped directly from the mHMD), their geographic
information (polled from wireless georeferencing of
the mHMD to lighthouse base stations), key simulation
events (available from automata state data), as well as
users’ gaze behaviors (calculated in a post-processing
step using ray-tracing). Each of these four pieces of in-
simulation information were fused to a common GIS
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infrastructure for subsequent analysis. For geographic
information, we collected in-simulation data in ways
that would permit direct comparisons to GPS data from
our real-world observations and diaries of embodied
locomotion so that counterfoil measurements could be
made. To evoke goal-driven behavior, we tasked human
users with approaching a signalized crossing in the
VGE and crossing through traffic. Users could choose
to do so by adhering to crossing signals, ignoring sig-
nals and choosing gaps in moving traffic, or jaywalking
outside crossing areas. We did not instruct users as to
which strategy to select.

8 Experimental analysis of motion control
in the Sidewalk2Synth pipeline

With these functionalities in the VGE, then, the pipe-
line for Sidewalk2Synth is in place. To test it in use-case
scenarios for embodied locomotion, we built a series
of experiments with live participant-users to evaluate
how they would embody themselves to the VR repre-
sentation of the model. This test was evaluated as the
robustness of motion control in use, gauged against
real-world locomotion data form our observation sets
described in Sect. 3.

The experiments tested a range of streetscape scenar-
ios for encounters that take place in small encounter-
based moments of space and time. These included tasks
to evoke embodied locomotion relative to:

+ The urban geography and urban design of the built
environment;

+ Ambient pedestrian-pedestrian interactions as steer-
ing and collision avoidance;

« Social dynamics of collective assembly and crossing
behavior at the crossing curbside;

+ Indicators from signalized crossing infrastructure;
and

Social force model
with 100 agents

Fig. 11 Samples of the movement generated by the purely algorithmic models

Seek model with two agents
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+ Traffic dynamics and traffic gaps.

8.1 Real-world experiments

Over an 18-month duration, we recruited human par-
ticipants to wear a chest-mounted video camera, GPS,
and a smart watch and asked them to record data as they
engaged in their day-to-day streetscape activities around
New York City and its suburbs. From this corpus of data,
we extracted a series of road-crossing epochs form the
broader activity-set, and we used these as validation
cases for the Sidewalk2Synth pipeline. Specifically, we
used crossing trajectories for urban and suburban areas,
four-way crossings, end of block and mid-block cross-
ings, signalized and unsignalized crossings, and a variety
of road lanes. We also used data for different times of the
week and day and night across different seasons with dif-
ferent streetscape physical conditions (puddles, sidewalk
obstacles) and crowd conditions.

8.2 Heuristic counterfoil experiments
As a control, we implemented a series of motion con-
trol algorithms and heuristics that are popularly used in
agent-based modeling of pedestrian locomotion (Fig. 11).
Several of these were designed to produce mathematical
motion, as Lévy flights (Bartumeus et al., 2005; Brock-
man et al., 2006; Viswanathan et al., 1996) and Brownian
motion (Schweitzer, 1997). Others were coded to pro-
duce path-planning behavior by shortest path traversal
(A* (Hart et al., 1968) and Dijkstra (1959)) with collision
detection and avoidance by Moore and von Neumann
cellular automata neighborhoods (Blue & Adler, 2001;
von Neumann, 1951). We also implemented a social force
model (Helbing & Molnar, 1995) of crowded movement
through a sidewalk corridor (with walls as a bounding
condition for the physical repulsion factor).

In heuristic experiments, a variety of agent popula-
tions were used, depending on the heuristic, ranging

Fleeing model
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from 1<n<100, depending on the simulation scenario.
We use the data (spatial and temporal position for loco-
motion trajectories) as a point of quantitative compari-
son for our human trials. Primarily, the heuristics show
results for specific locomotion behaviors (e.g., path pur-
suit, repulsion effects, collision avoidance, etc.) that are
useful as benchmarks.

8.3 VR experiments

8.3.1 Streetscape geography and urban design

To support experimentation with physical embodied
locomotion relative to built environment context, we
developed VREs with one-to-one mapping to real world
counterparts. Users of the pipeline, moving simultane-
ously through a VR representation of the geographic
environment and through a tactile physical studio space
therefore have an opportunity to engage their natu-
ral perception, cognition, action, and locomotion skills
to plan paths, encounter waypoints, deploy wayfinding
and navigation, steer, see and respond to collisions, and
engage in ambulation. Critically, the egocentric (user-to-
environment) and allocentric (environment-to-environ-
ment) distances in the VR environment were set to match
those of real-world streetscapes. Specifically, we set aside
a physical area of 82.72 square meters (890.34 square
feet) that user-participants could move through, while
rendering the same space in VR and adding synthetic
space covering several city blocks in the virtual surround-
ings (Fig. 12).
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Within the VR space, we included physical features of
streetscapes that play into embodiment (Granie et al,
2014), including building facades, window fronts, door-
ways, awnings, vegetation, sidewalks with varying tex-
ture, marked pedestrian crossings (Havard & Willis,
2012), roadways with lane markings (Kadali & Vedagiri,
2013), traffic lights (Yang et al., 2016), pedestrian cross-
ing lights (Lipovac et al.,, 2013), as well as physical light-
ing and shading effects (Choi et al., 2006) (Figs. 10 and
12). A unit of distance between these features in the VR
representation was matched to a unit distance in the
physical traversal space, and we built the scenes using
LiDAR measurements from our observations of real
crossings in and around New York City. These features
can be swapped easily, or they may be drawn procedur-
ally from GIS (Torrens, 2015a, 2015b). In the examples
that follow we will discuss experiments for a suburban
type streetscape with a signalized pedestrian light-con-
trolled (PELICAN) mid-block crossing and two lanes of
traffic. Elsewhere (Torrens & Gu, 2023), we have shown
a VR environment that was built for a dense downtown
streetscape with a four-way signalized crossing, designed
to mimic a counterpart site in Brooklyn, NY, USA. The
built setting can also be rendered in very high-resolution
or at lower resolutions. In the examples that follow, we
show results for a “good-enough” resolution rendering,
which user experiments showed to be useful for motion
control, and not too distracting vis-a-vis uncanny valley
artifacts (Kim & Torrens, 2024).

Crowd crossing in the real world

User-participant (represented with rose, yellow,
red, and blue axes) in a VR crossing crowd

Fig. 12 The urban design for our real observations and counterfoil simulation
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8.3.2 Streetscape crowding

Our observations (Sect. 3) showed that crowding at
crosswalks in particular was a factor in shaping possible
pedestrian embodiment to a given crossing scene. We
experimented with varying levels of pedestrian crowd-
ing on sidewalks, crosswalk assembly areas at the curb-
side, and in crosswalks. Only a single user-participant
was entered into the experiments per trial, but varying
numbers of agent-pedestrians were included to create a
diversity of crowding scenarios (Fig. 12). For the experi-
ments that we report here, in suburban settings, our
observational data implied that a crossing crowd of one
to four pedestrians (five when adding a user-participant)
matches the real world (although the size of these crowds
could be varied to very large dimensions if desired).

8.3.3 Peer effects on streetscapes

To experiment with peer effects (Pfeffer & Hunter, 2013),
e.g., from social influence (Faria et al., 2010; Mirzaei-
Alavijeh et al., 2019), group motion (Rosenbloom, 2009),
authority effects (Gutierrez et al., 2014), or inter-personal
biases (Collett & Marsh, 1974), we varied the demo-
graphic makeup and appearances of the avatar represen-
tations of the agent-pedestrians. Further, we provided
different profiles for motion behavior (and animation
cycles) to represent hurried, slow-moving, patient, impa-
tient, signal-abiding, and jaywalking behaviors (Figueroa-
Medina et al., 2023; Sueur et al., 2013). Our experimental
axes for variation were (1) risk profile (on a continuum
from safe motion control by waiting for a pedestrian
“walk” signal, to risky motion by crossing or attempting
to cross through moving traffic during a “don’t walk” sig-
nal); (2) sex profile (male or female avatar appearance);
and (3) social appearance (wearing business attire or
casual clothing). Specifically, risky behavior was weighted
to instruct the agent to cross only when there was a traf-
fic gap, but completely ignoring the crossing signal. This
resulted in preemptive crossing epochs of up to 15 s
before the “walk” signal was illuminated.

8.3.4 Streetscape signals

Our central experimental lever for the mediated (i.e.,
signs) space of streetscapes centered around streetscape
signals: both traffic lights and pedestrian crossing lights
(Lipovac et al., 2013). Observational research from other
authors has shown significant variation in the cues and
actions that pedestrians take in response to signalized
features on streetscapes, including age and sex differ-
ences in adherence to the motion rules that they advertise
(Tom & Granié, 2011), as well as variation in expected
norms across different countries (Gang et al, 2011).
Similarly, our own observations showed varying pro-
pensity among pedestrians to adhere to crossing signals,
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including alternating checks between signals and reac-
tions of peer pedestrians in different crowd densities at
crossing sites (section 11). Pedestrians’ propensity to vio-
late crossing rules and lights is particularly well-studied
in the literature, and observations point to demographic
variation as well as peer effects (Onelcin & Alver, 2015).

8.3.5 Streetscape traffic gaps

Pedestrians and vehicles come into perceptual contact as
well as potential physical contact when walkers enter the
roadway through jaywalking or at signalized crossings.
When doing so, pedestrians usually make a quick judge-
ment of the spacing and timing in traffic interactions
that they may have available to effect collision-free loco-
motion with other pedestrians and with vehicles, which
they then map to their own assessment of their capabili-
ties to produce matching movement. This can happen in
very small windows of space and time (Kadali & Vedagiri,
2013; Onelcin & Alver, 2015), or it may involve a delibera-
tive assessment of a streetscape scene (Nesoff et al., 2018;
Viola et al., 2010). The means by which pedestrians assess
and decide on available gaps in traffic is well-covered in
the observational literature, with results suggesting that
there is significant variation based on age (Dommes &
Cavallo, 2011; Zivotofsky et al.,, 2012), sex (Underwood
et al,, 2007), and skill (Liu & Tung, 2014; Oxley et al,,
2005). In our simulation experiments, we simulated dif-
ferent traffic patterns with different gaps (Liu & Tung,
2014; Plumert et al., 2004). We also programmed dif-
ferent risk and decision profiles (Sueur et al., 2013) into
agent locomotion to produce a range of gap acceptance
behaviors for users to embody themselves to in simula-
tion. We experimented with a range of different vehicles,
acceleration profiles, traffic density, and traffic patterns
(free-flow, bunching, gap-closing).

9 Analyzing motion

We considered whether we could validate the motion of
users in our system relative to the observed data that we
obtained via fieldwork. Doing so required that we build
a common ground truth between the streetscape and
simulation. Much more experimental analysis is available
in our controlled studio settings than in real-world sce-
narios. Indeed, our controlled studio experiments widely
permit motion capture, motion tracking, gaze detection
and tracing, gaze fixation, timings, and ego-centric and
allo-centric distance calculation. For live scenarios on
real streetscapes, we were more limited. However, we can
build motion trajectories and full movement paths from
differentially-corrected GPS data that we have from real-
world scenes and match these to commensurate data in
our virtual experiments. For our VR trials, we relied on
wireless location-awareness provided by range-finding
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between users’ mHMD and a set of lighthouse base sta-
tions distributed around our studio space. Our wireless
positioning has a locational accuracy of millimeters,
which we verified through motion capture. GPS data,
with differential correction, has a below-meter accuracy
as we have (almost equidistant) proximity to continuous
operating reference stations (CORS) in our GPS trace in
nearby Newark, NJ and Long Island, NY.

9.1 Quantitative analysis of locomotion

To evaluate whether the Sidewalk2Synth pipeline was
able to create locomotion scenarios with parity to real-
world streetscape embodiment, we analyzed motion tra-
jectories directly from our experiments with real walkers
on-the-ground in New York City and its suburbs. We also
measured counterfoil trajectories for user-participants in
our studio-based VR experiments. Additionally, we meas-
ured heuristic motion from parallel simulations, and then
compared them empirically. We note that the resolution
of our VR experiments within the Sidewalk2Synth pipe-
line is very high (sub-centimeter in space and 120 Hz in
time), while GPS signals in the real world were relatively
coarse (at best, sub-meter in space and 10 Hz in time).
To establish data parity ahead of analysis, we up-sampled
the GPS trajectories in Hz, while preserving the original
frames. We subsampled crossing epochs from our real-
world trajectory corpus that had equivalent lengths that
matched movement trials in the VR/studio space.

We used a variety of motion statistics to generate
measurements. For step-by-step motion, we studied cor-
relation of adjacent turning angles (Benhamou, 2004), as
an indicator of step-by-step directional persistence over
a trajectory. Low correlation values (near zero in value)
may indicate a lack of statistical association between one
turning angle and the next (as in Brownian motion, for
example). High positive correlation values show code-
pendence between larger step-by-step turning angles,
as would occur if a pedestrian is consistently turning
as they move (near+1). High negative correlation is
indicative of inverse stepping, as in cases of relatively
high sinuosity along a trajectory (near —1) by shuffling
or stutter-stepping. We analyzed the general directional
trend of motion using mean cosine of turning angle (Cod-
ling et al., 2008) (p. 823). Higher cosine values indicate
relatively straight movement, while lower values may be
associated with sinuosity. We calculated cosine of turn-
ing angle between successive fixes on trajectories and
we then averaged (mean) across the trajectory (so, direc-
tional preponderance on a per-trajectory basis). Note
that generally turning angle is related to speed of move-
ment: pedestrians likely have more capability to (instan-
taneously) turn at low speeds than they would have while
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running, although pedestrians can usually exercise con-
siderable ability to shift direction at most speeds due to
their ambulatory dexterity and ability to pivot through
weight shifting, twisting, heel maneuvers, and so on, as
in dance (Ada et al., 2003). We additionally estimated
the probability of turning in the same direction, aver-
aged on a per-step basis over the movement sample. Our
movement data were collected at relatively high resolu-
tions of space and time, with the implication that move-
ment statistics could be calculated over several scales.
To account for this, we also performed fractal analysis
of trajectories (Nams, 2006), estimating a general linear
fractal as well as a mean fractal. The mean fractal is cal-
culated in a forward direction from the first location fix
in the motion sequence, then again in a backward direc-
tion from the last location fix, taking the average of the
two (Nams, 2006; With, 1994). Fractal analysis has the
added benefit of allowing us to compare trajectories in
our experiments with those of other real-world stud-
ies and simulation studies. Generally, the fractal dimen-
sion of a trajectory sample would near a value of+1 for
purely straight movement (Torrens et al.,, 2012), and tend
toward a value of+2 for (infinitely) sinuous movement
(purely random walks, for example, would generally cast
values toward+2) (Bartumeus et al., 2005; Batty, 1997).
A set of movement-based building blocks were also cal-
culated as part of these compound analyses, including
step count, path length, number of steps per movement
trip, steps per unit length of motion, and step size, which
we additionally used to assess parity of structure between
simulation outputs and real-world measures. We also
mention that because our virtual experiments were per-
formed in a studio, we have access to unit distance val-
ues that map to real space. In aggregate, the measures of
turning angle and of fractality yield a relative measure of
(1) directional preponderance, and of (2) relative sinuos-
ity, between motion sequences. In each case, movement
statistics were implemented following (Nams, 1996).

9.2 Qualitative analysis of embodiment

We administered a set of questionnaires to the human
user-participants to evaluate their personal sense of
embodiment while engaged in the simulation trials. The
questions were tasked with uncovering two principal fac-
tors. The first set (P-questions) evaluated how users felt
embodied to the simulation as a virtual medium. The
second set (R-questions) evaluated users’ embodiment
to the simulation as a streetscape, asking specifically how
they engaged with dynamic elements of the synthetic
environment. The general tone of the questions were as
follows (the exact wording of the questions is shown in
full in Appendix A, Figure A4).
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Embodiment to a virtual medium.

o PI1: Whether users felt connected to the synthetic
streetscape

o P2: Whether users felt surrounded by the virtual
streetscape

« DP3: Whether users felt the virtual streetscape simply
looked like pictures

o DP4: Whether the users felt absent from the virtual
streetscape

+ P5: Whether the users felt that they had agency in the
virtual streetscape

+ P6: Whether the users had a realistic sense of naviga-
tion in the virtual streetscape

« P7: Whether the users felt compelled to pay attention
in the virtual streetscape

« P8  Whether the
users'captivation

o P9: Whether the virtual streetscape felt real to users

o P10: Whether the virtual streetscape held consist-
ency with users’real world experiences

o PI11: Whether users felt they could distinguish the
virtual streetscape from the real world

virtual ~ streetscape  held

Embodiment to streetscapes

« R1: Whether users crossed synthetic roads with
behavior that they felt matched their real-world
behavior

« R2: Whether users sought to avoid physical collisions
with vehicles

+ R3: Whether users sought to avoid physical collisions
with pedestrians

+ R4: Whether users obeyed crossing signals

10 Results

Our analysis of the performance of the Sidewalk2Synth
pipeline with real immersed users had two principal aims.
First, we sought to establish whether the model could
evoke realistic embodied locomotion in applied and
embodied user-participating simulation. Second, if the
pipeline is indeed a useful counterfoil to real streetscape
dynamics, we aimed to use it to evaluate embodied loco-
motion scenarios. In short, our results show that the
pipeline is a close fit (but not a completely convincing fit)
to reality, and that it can support experimental analysis
with human users in hard-to-test scenarios with bearing
to real streetscapes. Detailed empirical results are avail-
able in Appendices. An illustrative example of the results
is shown in.
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10.1 Can Sidewalk2Synth evoke realistic locomotion
from immersed human users?

Our findings demonstrate that the Sidewalk2Synth pipe-
line is indeed capable of evoking locomotion from users
with embodied characteristics that match to real-world
counterpart streetscape encounters. Results for real-
world movement (n=20 counterpart comparisons) are
detailed in Appendix A section 11. Results for immersed
user locomotion (7 =24) on Sidewalk2Synth are provided
in Appendix A section 11. Results for other agent-based
locomotion heuristics (#=up to 100) from the movement
modeling literature are shown in Appendix A section 11.

An “apples to apples” comparison shows that Sidewalk-
2Synth produces motion that is markedly distinct from
our comparison set of motion control algorithms and
heuristics. Essentially, the motion produced in Sidewalk-
2Synth is much more organic than would be generated
by heuristic agent-based routines. The closest empirical
fit was between user locomotion in Sidewalk2Synth and
crowd steering behavior from the Reynolds model (Reyn-
olds, 1987, 1999), which produced a fractal dimension
of ~1.01 for generalized steering, and ~1.024 for steer-
ing by wandering behavior. The averaged fractal dimen-
sion for our real-world observations was 1.023 and for
simulation it was 1.04. The fractal dimension results for
other heuristics were wildly different than our observa-
tion data and our human trials in Sidewalk2Synth and we
thus conclude that our pipeline is closer to reality than to
generalized computational heuristics.

Nevertheless, the results from our comparisons
between Sidewalk2Synth and our observation data from
real streetscapes indicate that we have some work to do
to get a tight fit between reality and our simulation, as
metrics are closely matched in some parameters, but in
discord for others. Human participants in the Sidewalk-
2Synth simulations tended, on average, to move with
less steps per unit length than their counterparts moving
through real urban spaces (an average of 35.478 through
the simulation, and 46.482 in real spaces). Average mean
cosine results were relatively comparable between reality
and simulated environments (average of 0.941 and 0.946
respectively). However, the average probability of turn-
ing in the same direction was much higher in simulation
than in the real world (0.765, compared to 0.205 for the
real world). The average correlation for adjacent turning
angles was higher for reality than in the simulation, and
the correlation in reality was negative (which is indicative
of peripatetic turning on a step-by-step basis). The aver-
age fractal dimension for simulation was also higher than
we recorded for movement in real spaces: 1.023 for real-
ity and 1.04 for simulation, average across all paths. This
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means that movement in the simulation is more sinuous
than in reality, per-trip: even if the step-by-step results
show relative persistence on locomotion, small adjust-
ments can add-up to a larger fractal dimension for the
longer trajectory of locomotion. Although, we note that
compared to our agent heuristic comparisons, Sidewalk-
2Synth was a much closer fit to reality.

Here, we offer some caveats. First, the simulation sce-
narios contain some relatively extreme test cases of risky
behavior, with many events of user jaywalking and dash-
ing between unsafe traffic gaps. The real-world metrics
are therefore actually a better fit to the safe scenarios in
our simulations than they are too risky scenarios (for
which we do not have observation data, due to the haz-
ards involved in real life). Second, there are some resolu-
tion disparities between simulation data and real-world
GPS data that reduce the efficacy of some of the trajec-
tory statistics. This is a by-product of the synthetic reso-
lution of our model output, which could theoretically
approach infinite fineness. Third, we point out to the
reader that our simulation scenarios are a much closer fit
to reality than the companion heuristics from other mod-
els that we tested. Fourth, we note that there is a broad
variation in results of movement statistics for different
streetscape types. Our real-world experiments showed
a shift across results when compared for residential and
non-residential streetscapes, for example.

10.2 Did users feel embodied to Sidewalk2Synth?

Our evaluation of user embodiment while engaging in
locomotion trials in the simulation showed that users did
indeed seem to be convinced by Sidewalk2Synth’s ability
to support embodied locomotion. In other words, Side-
walk2Synth supported verisimilitude in users’ embodied
locomotion: against the caveat that of course the simula-
tion is synthetic, the combination of virtual embodiment
scenarios delivered against real physical locomotion in
a studio setting allowed users to behave naturally with a
convincing connection to the real world.

Results from user questionnaires are shown in aggre-
gate form in Appendix A, section 11. Users were invited
to score their responses with negative, neutral, or posi-
tive valence on a Likert scale. These valences are color-
coded in Appendix A, section 11 and the total number of
responses per score are listed as integers. Usersanswers
to the presence questions indicated that they felt “there”
in the synthetic streetscape (P1), and indicated that the
felt surrounded by the streetscape (P2) (i.e., they had
strong ego-centric presence) and that they lost sense of
the studio environment while engaged with the mHMDs
(P6). Not surprisingly, users were aware that the simula-
tion was virtual (P11). Users did not indicate a negative
sentiment toward the pipeline’s presence factors when
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directly questioned on that topic (P3 and P4). Users also
felt that they could act-out their behavior in the simu-
lated streetscape (P5) and they felt engaged by the simu-
lation to pursue their behavior (P7 and P8).

10.3 Using Sidewalk2Synth to test different scenarios
for embodied locomotion

If the pipeline is indeed trustworthy as a useful counter-
foil to reality, can we then test different motion control
scenarios of real, live, behaving participant-pedestrians in
it? There is a huge swath of potential experimental levers
that we could “pull” in virtual form, to evaluate what
their impact might be on streetscape policies in reality.
Here, we examine two such levers, which have currency
in the theoretical and case study literature for streetscape
science: crowd size and peer effects. Both come into
convergence in the form of crossing safety, which the
conceptual literature has associated as being a phenom-
enon that could potentially frame and explain recent
increases in road-crossing harm that have steadily been
growing despite dedicated efforts to safeguarding sites on
streetscapes via Vision Zero (City of New York 2019) and
other campaigns. Experimentation with road-crossing is
all but infeasible in reality due to the dangers involved.
As such, virtual streetscapes have several experimental
value platforms, but need to be realistic at micro-scales
of streetscape environments, individual behaviors, and
interpersonal dynamics of pedestrians to be reliable as a
platform for testing.

10.3.1 Crowd size

In simulation, we established a range of scenarios to vary
the crowd size at crossings. These ranged from dyads to
larger groups (“crossing pelotons”). The crowding scenar-
ios showed that immersed user-participants in relatively
dense pelotons tended to move in largely the same man-
ner as those in dyads. Average mean cosine for low den-
sity (0.951) and higher density (0.941) were a close match,
as were the probabilities of turning in the same direction
(0.773 for dyads, 0.758 for pelotons), average correlation
of adjacent turning angles (0.565 for dyads, 0.521 for pel-
otons), and average fractal dimension (1.044 for dyads,
1.046 for pelotons). However, human participants that
crossed with pelotons used more steps per unit length
(40.642 on average) than those in dyads (38.848 on aver-
age). One explanation is that dense pelotons create more
potential collisions, and participant stutter-stepping is
used in locomotion as a response.

10.3.2 Peer effects

We established a set of simulation scenarios with varying
mixtures of risk-taking among agents. Risk-averse agents
would wait to cross a road only at a signaled crossing site,
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and they would adhere to crossing signals for “walk” and
“don’t walk” signals (green pedestrian icon and red hand
icon respectively). Risk-taking agents were apt to ignore
these signals, would move quickly to cross a road, and
would also accept very tight gaps in moving traffic while
jaywalking. These groupings were introduced as scenar-
ios to test whether human participants would peer-adopt
risk-taking behavior or risk-aversion as a norm in their
own crossing decisions.

For human participants immersed in the simulation,
risky-behaving agent peer groupings were associated
with a lower number of steps per unit length of loco-
motion taken by immersed human participants in the
simulation scenarios. Average steps per length for risk-
averse peer environments were 47.601, while they were
on average 32.512 and 37.802 respectively for mixed-
risk and risk-taking peer group crossing contexts. Par-
ticipants moved faster and hesitated more in risky peer
groups than they did among risk-averse peers. Average
mean cosine was higher when exposed to risk-taking
peers (averaged as 0.935 for safe peers and climbing to
0.939 for mixed-risk peers and then again to an average
of 0.95 for risky peer contexts). The probability of turning
in the same direction on a step-by-step basis increased
as human participants were exposed to risky peers: aver-
ages were 0.751 for risk-averse peer context, 0.76 for
mixed-risk contexts, and 0.776 around risk-taking peers.
Fractal dimension results for different scenarios of risk
context were relatively stable across experiments (averag-
ing 1.041 to 1.046). These results show that human par-
ticipants adopted straighter movement paths when with
risk-taking peers than they did around risk-averse agents.
We interpreted this as indicating that human participants
(perhaps blindly) followed risk-taking peers at crossings.
This peer effect was also apparent when we reviewed
playback animations of the participant trials.

11 Automating Sidewalk2Synth as an end-to-end
pipeline

Development of Sidewalk2Synth from first principles
involves a concerted effort to sweep through data collec-
tion, model development, user studies, and simulation
experiments. To examine whether we might be able to
encapsulate Sidewalk2Synth in a portable and generaliz-
able pipeline, we developed a preliminary automated ver-
sion. This is designed to run, end-to-end (i.e., from live
data feeds, through modeling, via simulation, to output)
in real-world contact scenarios. Our prototype automa-
tion takes on two forms: a container-based solution that
is designed to run on edge devices, and a portable aug-
mented reality version that is intended to run on tablets
and phones.
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11.1 Edge Sidewalk2Synth

Edge devices are growing in popular use for smart city
applications. Generally, they consist of relatively light
computer hardware (typically, system-on-chip (SoC)
devices) that contain a power source, a small mother-
board, a low-power CPU or GPU, and wireless network-
ing. Edge devices typically run containerized software
and firmware that can be tailored to particular applica-
tions, such as computer vision. Usually, edge devices are
federated into an array of near-phenomena computing
and they are tasked to perform preliminary analyses near
streetscapes, for example, and to pass results (but not
necessarily full video streams) to a centralized computer
for down-stream activity such as multi-site simulation.
In this configuration, they are referred to as Wi-Edge
(Torrens, 2022a, 2022b), working wirelessly in concert to
perform edge computing or edge artificial intelligence,
typically over high-bandwidth and low-latency (HB/LL)
network architectures.

For our prototype, we set up the front-end of Sidewalk-
2Synth (video input and machine-learning) and partially
implemented the back-end (trajectory prediction from
learned bounding boxes and video frame association) on
Wi-Edge. In this configuration, the agent-based pedes-
trian and driver behavior are sidestepped completely. Our
results show that Edge Sidewalk2Synth can work in real-
time on busy streetscapes (Fig. 13, section 11). Detected
crossing signals, pedestrians, pedestrian pose-graphs,
pedestrian trajectories, and streetscape atlases could
potentially be passed on to centralized simulation run-
ning on a CPU or cluster, feasibly with edge input across
multiple sites in a city. (We note that we only tested
edge Sidewalk2Synth on one edge device for this paper,
but elsewhere (Vyas & Torrens, 2024) we have shown it
working across many devices by federated learning.)

11.2 Augmented Sidewalk2Synth

Our second automation prototype tackles the missing
components of Edge Sidewalk2Synth, chiefly the lack of
a live run-time agent-based simulation. We implemented
an augmented reality (AR) version of the pipeline, Aug-
mented Sidewalk2Synth, running completely in real-time
via Unity on Apple iOS (Torrens & Gu, 2023). In the AR
implementation, a light version of the pedestrian agents
and driver agents runs. Computer vision and manual
geo-fencing is used to interpret the VGE directly from
a tablet camera. We ran detections for sidewalks, roads,
pedestrian crossings, street furniture, lampposts, traf-
fic signs, and buildings. Agents will steer to avoid colli-
sion objects, other agents, and agent-driven vehicles.
They will also cross only at crosswalks. The agent system
is rendered via Unity over the live camera video feed,
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Fig. 13 Edge Al deployment (via Wi-Edge) of deep learning for detection of locomotion during road-crossing, and embodiment to crossing signals
(Potdar & Torrens, 2019; Torrens, 2022b)
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Fig. 14 Augmented reality version of Sidewalk2Synth running on a nighttime streetscape in downtown Brooklyn, NY, USA. Images are direct
screenshots from an Apple tablet



Torrens and Kim Urban Informatics (2025) 4:16

providing a mixed-reality (MR) mash-up of Sidewalk-
2Synth and the live scene. In this way, users can embody
themselves directly in the pipeline, running what-if sce-
narios on top of live streetscape dynamics (Fig. 14).

12 Conclusions and future work

In this paper, we have evaluated whether simulations
might be drawn to closer parity with real-world dynam-
ics for streetscape applications. Our approach leans on
two dimensions of this query: whether human movement
through streetscapes might be represented in higher-
fidelity, and whether one might be able to represent
embodiment in simulation. We consider both factors as
convergent around the topic of embodied locomotion,
and we established an experimental protocol to collect
data on real-world embodied locomotion, to pipe those
data into model form, and to generate dynamic simula-
tions with the products. We also examined whether real
human users could be brought “into” such simulations,
via embodied locomotion, for the purposes of experi-
mentation with virtual scenarios. We approached user
embodiment in two fused formats: first, we allowed users
to move with real locomotion through a studio setting,
where they could walk, wander, and look around with
their natural behavior; and second, we developed a high-
fidelity streetscape simulation that we could deliver to
users as embodied VR. An obvious question is whether
this works with a reasonable match to real-world embod-
ied locomotion, and we evaluated this match by testing
simulated and real locomotion against real-world tra-
jectory samples from streetscapes around New York
City and its suburbs. We also engaged users with ques-
tionnaires to evaluate their sense of embodiment in the
simulation and its authenticity relative to their real world
encounters.

A limitation of our approach is that it only consid-
ers one-way pedestrian movement (a human user and
its surrounding peer dyad and group crossing together
without ongoing pedestrian traffic from the other side of
the street). This approach was used to control for influ-
ence on gap determination, gap acceptance, and gap
action. However, it is unrealistic in dense urban areas.
In a related paper we have implemented a different ver-
sion of the simulation with two-way crossing and crowd
formation along sidewalk segments (Torrens & Gu, 2021,
2023). Integrating that crowd-based approach into Side-
walk2Synth will be a task for future development. Criti-
cally, we need more physical, tangible studio floor space
to build user experiences that can stretch over two side-
walk segments and a roadway. Our proposed solution
is to use redirected walking (Razzaque et al., 2002; Sun
et al,, 2016, 2018) as a way to fold the virtual space of the
simulation to fit within a smaller physical space.
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Our results show that a pipeline that moves from
observation, through models, to simulation and user
interaction is feasible and we introduced a detailed meth-
odology for how that can be accomplished using mix-
tures of sensing technology, deep learning, agent Al, and
VR graphics, with GIS providing support. Our analysis
points to quantitative and qualitative evidence that users
engage simulated streetscapes with embodied locomo-
tion that matches reasonably and sensibly to the real
world. We also showed a preliminary proof-of-concept
using Sidewalk2Synth to evaluate road-crossing scenar-
ios with simulated dangers.

Several future questions remain open to exploration
around the ideas that we have advocated for in this paper,
and we discuss them both briefly and partially here with
hope that readers may be interested in interpreting them
in applications that intrigue them. The first relates to the
concept of embodiment, which is broadly interpreted in
conceptual form in the existing literature (see Sect. 2).
We focused our development efforts on embodied loco-
motion, but other facets of embodiment could be stud-
ied with similar observational and simulation-based
protocols, particularly social embodiment (which we
reason could be very usefully examined through NVCs
as motion capture data or deep learning on poses). A
second promising vector for future study could focus
around automating the sorts of pipelines that we have
shown in Sidewalk2Synth. Our early prototyping has
shown that components of the Sidewalk2Synth technol-
ogy stack can be ported to edge devices as a form of Edge
Al and of mixed-reality AR. One could feasibly imagine
federations of these interoperating as Wi-Edge (Tor-
rens, 2022a, 2022b, 2023) over federated learning (Vyas
& Torrens, 2024), with the ability to generate widespread
streetscape insight from hyper-local epochs of embodi-
ment. In ongoing work, we are developing a fused sys-
tem that will run Sidewalk2Synth seamlessly over edge
devices and AR, via a federated simulation. Third, it is
feasible that aspects of the pipeline that we demonstrated
here could be ported to wearable technologies, particu-
larly to AR glasses. We have shown a prototype of the
agent Al simulation stack that works as AR in (Torrens &
Gu, 2021, 2023). The prospect of turning AR-based cam-
eras outward to the embodied streetscape, while an edge
device, on-device computing, or off-site computing rea-
sons on the ego-centric viewshed of an individual pedes-
trian, and returns personalized and localized insight that
is both context-aware and situation-aware is potentially
a very promising area of development and inquiry, with
significant potential returns to the conceptual literature
in behavioral geography in particular. Fourth, it is feasi-
ble that pipelines that flit easily from reality to simula-
tion and back, involving real human users at parity to the
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space—time scales of their lived experiences could suggest
a new era for geosimulation (Benenson & Torrens, 2004;
Torrens, 2004) in particular. In this paper, we aimed to
develop simulations with high realism. Our intended out-
put was therefore not an abstraction of reality, but rather
an alternative reality. We note that this is an approach
that differs from deep learning (LeCun et al., 2015) and
existing forms of Sim2Real modeling ((Doersch & Zis-
serman, 2019)which is by contrast focused on pattern-
matching as an outcome, rather than fidelity of behavior).
Approaches such as Sidewalk2Synth, instead, aim toward
new veins of modeling that are more aligned with arti-
ficial general intelligence (AGI) (LeCun, 2022). An obvi-
ous question, perhaps, is whether a foundation model
for embodied locomotion might be in reach and if so
whether it could inform human applications, or even
applications in robotics.
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