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Abstract 

We demonstrate methods for generating synthetic scenarios of embodied locomotion on sidewalks, drawn 
from detailed observations of situation and of context on real-world streetscapes. We show that, through observa-
tion and sensing, quite rich and high-resolution data can be gleaned from small and fleeting windows on pedes-
trian locomotion as it unfolds in lived spaces. These insights can provide valuable explanations of how pedestrians 
experience and embody encounters in physical and social context at localized and individualized scales of space 
and time. Using agent AI, we demonstrate that this knowledge can be transferred into high fidelity models, capturing 
the essence of embodied locomotion and providing a basis for experimentation with what-if scenario as simulation. 
By implementing simulations as virtual reality media, we showcase an end-to-end experimental pipeline that allows 
real human participants to embody themselves in synthetic sidewalks, directly using their innate and tangible percep-
tion and locomotion. Our approach establishes a new pliability between real and synthetic embodied locomotion, 
which we argue can provide experimental maneuverability relative to ordinary questions, as well as to extraordinary 
scenarios that are challenging to examine on the ground. Sidewalk2Synth could also help to circumnavigate exist-
ing challenges in machine learning around training-based approaches that lack robust empirical evidence of priors 
and that are otherwise resistant to generalization outside specific places and times.
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1  Introduction

“That’s not really me in there/I would never do that” 
(Nine Inch Nails, 2016).

Streetscapes are an important sub-space of the built 
environment, formed among the interstitial geogra-
phies that take hold between building façades, sidewalks, 
curbs, and roadways. They are often teeming with inter-
mingled activity that people routinely spill into, and 

course over. Pedestrians come to streetscapes from their 
homes or from establishments that they have visited, 
while others commingle with them to load and unload 
passengers and goods onto transport systems and in and 
out of businesses (Mishra et al., 2015; Sarker et al., 2015). 
A variety of workers rely on streetscapes as a production 
environment, including public works crews (Loukaitou-
Sideris & Ehrenfeucht, 2011), crossing guards (Gutier-
rez et  al., 2014), and salespeople (Bhargava & Donthu, 
1999), who must take care to read the shifting dynam-
ics of streetscapes as a servicescape. Many streetscapes 
carry specific meaning—as places (Tuan, 1975, 1979)—
with cultural associations (Batty et  al., 2003), with his-
torical significance (de Valera, 1986), and with persistent 
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character that can shape them into attraction sites for 
tourism (Chen et al., 2024; Urry, 2002).

Explaining the interplay among all these factors, col-
lated across the perspectives of many differently moti-
vated and acting individuals, each played out against 
the broad milieu of streetscape settings and scenarios 
presents significant overlapping complexity in inter-
pretation. It is therefore understandable to investigate 
streetscape dynamics for commonalities, which could 
form a starting point for understanding. Streetscapes 
that are conventionally considered to be successful are 
often regarded as both accessible to locomotion and gen-
erous in the overlapping opportunities for encounter that 
they afford their visitors (Foltête & Piombini, 2007). Both 
considerations of how pedestrians build entanglement to 
their surroundings—with movement and engagement—
can usefully be converged in the concept of “embodi-
ment”. At its core, embodiment is concerned with how 
one’s behavior is physically enacted relative to encoun-
tered input (Kiverstein, 2012; Ziemke, 2013). Our consid-
eration of embodiment is focused on two special cases. 
First, we investigate streetscape embodiment, wherein 
behavior is brought to life in the physical and human 
environments that streetscapes host. Second, we exam-
ine embodied locomotion, as enacted traversal through 
streetscapes and the encounters that happen along the 
way.

The high-level purpose of the paper is to show how 
one might simulate synthetic embodiment, rather 
directly, from locomotion context as it plays out on real 
streetscapes. We chase this goal with three aims. First, 
we endeavor to show the intimate connection between 
pedestrians’ locomotion along streetscapes and their 
embodiment to the streetscape. Studying this connection, 
we reason, can assist in building knowledge of behav-
ioral geography (Golledge & Stimson, 1997). Second, 
we present the case that the current generations of data 
products that could inform understanding of embodied 
locomotion could be very usefully supplemented with 
fresh insight that can come from computing (Torrens, 
2016a, 2018a, 2022a). Here, we examine two main path-
ways for computer science to contribute novel action-
able knowledge: automated observation of real embodied 
pedestrian locomotion, and simulation-assisted explo-
ration of what-if factors that can be advanced in virtual 
reality. Third, the details of getting this to work suggest 
several promising lines of academic inquiry for the com-
munity, including empirical examination of whether 
behavior might be robustly implied from observation 
of encounters (Johansson et  al., 2008), how immersive 
sensing technologies could be adapted to capture pedes-
trian encounters in very small and fleeting windows 
of space and time (Camara et  al., 2020), and whether 

extended reality media can act as reliable experimental 
environments (Chen et  al., 2023; Çöltekin et  al., 2020). 
We endeavor to show that these three aims are indeed 
actionable through a unified pipeline that moves from 
observation, through computational analysis, via models, 
into simulation, and codified as empirical outputs. We 
refer this pipeline as “Sidewalk2Synth”, as a portmanteau 
of the two boundaries of the problem space, beginning in 
the real world and ending in a synthetic, research-tinged, 
synthetic approximation of that reality, with signifi-
cant flexibility to bounce back and forth with question-
ing between both. Bridging gaps between what is real 
and what might be usefully synthetic raises questions of 
authenticity, and so we also discuss how one might vali-
date embodied locomotion in our pipeline.

Briefly, the paper is organized as follows. First, we pro-
vide background material to motivate the work and to 
set it in the context of existing scholarship. Second, we 
describe an observational instrument to obtain ground 
truth data from real world locomotion embodiment in 
outdoor settings, chiefly from pedestrian encounters in 
busy urban streetscape scenes. This involves both first-
person and third-person observation with qualitative 
behavioral coding as well as sensor-based measurements. 
Third, we introduce a live experimental instrument for 
collecting motion capture data from real people in a stu-
dio setting, mocked-up to mimic the observed real-world 
scenes. Fourth, we detail a computational model designed 
to facilitate representation of the observations, qualita-
tive data, and empirical measurements in a synthetic and 
simulation-based representation of the observed scenes, 
for which we have many (highly-finesse) dimensions of 
scale and experimental control (Fig.  1). This simulation 
is based on relatively strong agents (Franklin & Graesser, 
1997), i.e., decision-making and situationally driven finite 
state machines that are developed for a match to real-
world and theoretical behaviors (Torrens, 2010b). Fifth, 
we illustrate a live experimental scheme to immerse real 
human users directly in the simulation via virtual real-
ity immersion with paired real-time telematics of user 
states. We show that this virtual instrument can be used 
to generate locomotion and embodiment scenarios for 
which we would not otherwise have experimental control 
in real-world settings (particularly those involving close 
encounters with fast-moving vehicles). Sixth, we describe 
a series of tests, imposed on the model environment, on 
user behavior, and on pairings between the two. The aim 
of these tests is to assess whether Sidewalk2Synth can 
faithfully reveal realistic user behaviors. Our tests show 
that this is the case, and on this basis, we examine some 
preliminary use-case scenarios, based around examining 
social embodiment (to peer and group effects) in road-
crossing behavior. We conclude with some commentary 
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on future work and the implied implementations of our 
experimental instrument for locomotion science. The 
general flow of activity in developing Sidewalk2Synth is 
illustrated in, and details are provided throughout the 
remaining text of the paper.

2 � Background
Typically, embodiment evokes physical considerations 
of how people connect, through touch and sensation, to 
things around them. By extension, one can straightfor-
wardly consider how people might project that physical-
ity and alter their physical behavior to avail of tangible 
connections or to avoid a contact. Similarly, one might 
embody their interactions to their surroundings to signal 
a physical action, through choreography or non-verbal 
communication, for example (Andersen, 2008). There 
are a variety of disciplinary considerations of embodi-
ment that are pursued in academic discourse (Simon-
sen, 2013). In embodiment, sensation and sensing are 
generally framed as being ego-centric, in that embodi-
ment can come from an individual’s interpretation of 
different dimensions of streetscape character (Crouch, 
2000). Ideas about environmental embodiment are well 
established, and generally center around the idea of affor-
dance: what one’s physical embodiment enables you to 
do and avail of (Gibson, 1950, 1966, 1979). In some ways, 
we might usefully consider this as opportunistic embodi-
ment, raising questions of what circumstances establish 
opportunities for embodiment, and when they present 
how those opportunities might connect with a pedes-
trian’s behavior. This is a productive strain of reasoning 
because locomotion brings pedestrians into ever-shifting 
opportunities as encounters. Increasingly, embodiment 
is also considered as a property of psychology, especially 

as a factor in cognition (embodied cognition) (Adams, 
2010; Anderson, 2003; Clark, 2008). Sub-themes include 
the role of embodiment in shaping emotional behav-
ior (Michalak et  al., 2009) and attachment, for example 
(Davidson & Milligan, 2004). Embodiment can also be 
interpreted through the lens of social psychology (social 
embodiment) (Goldman & de Vignemont, 2009; Lindb-
lom, 2015; Meier et  al., 2012) and sociality more gener-
ally (Niedenthal et al., 2005). The material conditions that 
convey or afford embodiment may be flexibly considered, 
as connections in a cyberspace (Dodge & Kitchin, 2005), 
transactions with media (Krishna & Schwarz, 2014), 
or even encounters that are curated formally through a 
defined user experience (Dourish, 2001) or as compo-
nents of computing (Schick & Malmborg, 2010). Gener-
ally, these come under the theme of embodied interaction. 
Within each of these embodiment disciplines, one can 
then consider particularly typologies of embodiment. 
This is very well-covered by Ziemke (2013), who outlines 
six approaches to typifying embodiment. For the pur-
poses of this paper, we deal with three of them. We enter-
tain the notions of “physical embodiment” as a tangible 
form of lived interaction; of “historical embodiment” 
as the accumulation of knowledge, skill, mannerisms, 
habits, and norms developed from prior interactions; 
and of “social embodiment” as embodiment with social 
sensation.

Here, we introduce our own approach to embodi-
ment, which retains connections to each of the Ziemke 
(2013) concepts. We reference this as embodied locomo‑
tion, and we consider it with application to the domain 
of streetscape science. Locomotion and embodiment are 
closely coupled in streetscape encounters (Middleton, 
2010; Shaw, 2015). We consider that when people move 

Fig. 1  The main steps in developing the Sidewalk2Synth pipeline flit between theoretical concept-development, fieldwork to test those 
concepts in natural settings, data science to add value to observational data, experiments to add new data by motion capture, development 
of virtual and agent models, run-time development for virtual reality hardware, simulation scenarios with recruited human subjects, data output, 
and trajectory analysis
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in busy physical settings or in crowded social condi-
tions, their embodiment shifts rapidly, flitting from one 
encounter to the next through dynamics of action, reac-
tion, interaction, transaction, and even proaction. Exam-
ining the “when?”, “where?”, and “with-whom?” of these 
processes these shifts can potentially be incredibly useful 
in explaining potential reasons “why?”. Revealing empiri-
cal properties of embodied locomotion to settle such 
questions is a challenge with many dimensions of consid-
eration. First, embodiment is a highly personal phenom-
enon (Cresswell, 1999). Given the considerable number 
of people and events that pulse through a streetscape, 
individuality of embodiment invokes the law of requi-
site variety (Ashby, 1958) at burdensome scale. Second, 
embodiment, especially while moving, can unfold over 
very fragile, delicate, and fast-moving pockets of space 
and time, as fleeting encounters that are transitory even if 
they are significant (Crouch, 2000). Third, the context of 
embodiment can be difficult to generalize from one set-
ting to another (Middleton, 2010). Consider, for example, 
how you would embody yourself on a walk that is routine, 
as compared to a new streetscape that you might visit as 
a tourist. Fourth, embodied phenomena easily assume 
properties of complex adaptive systems (Torrens, 2010a, 
2015b), with all of the thorny issues of non-linearity that 
usually entails, and that can easily eschew tractable codi-
fication in scientific inquiry.

Given these challenges, models of embodied locomo-
tion are a logical choice for experimenting with ques-
tions of “when?”, “where?”, “with-whom?”, and “why?” 
But, existing model approaches generally take on coarse 
representations that are ill-suited in extension to micro-
scales beyond their original design (Torrens, 2014a, 
2014b). This relates to longstanding discord between top-
down models and bottom-up models (Torrens & Nara, 
2013; Torrens et al., 2013) on points of ecological fallacy 
(Openshaw, 1984; Wrigley et al., 1996), modifiable areal 
unit problems (Openshaw, 1983), and laws of requisite 
variety (Ashby, 1958). New theoretical ideas—chiefly 
Non-Representational Theory (NRT) (Thrift, 2008), 
which advocates for examination of how geographies and 
other disciplinary realities are generated through encoun-
ter, rather than reacting to representational formalisms—
have emerged to tackle some of the conceptual challenges 
of framing embodiment, but they are overwhelmingly 
conceptual in exposition (Torrens, 2024). Nonetheless, 
many of these concepts are actionable as models, particu-
larly those from early success in advancing NRT ideas of 
mobile embodiment (the so termed “mobilities turn” in 
geography and sociology) (Edensor, 2012; Sheller, 2017; 
Sheller & Urry, 2006). Matching model support could be 
very helpful in buttressing this conceptual work, and this 
is partially what we aim to present in this paper.

Inevitably, questions of data arise when discuss-
ing modeling embodiment. Unlike trip-type mobilities 
research (He et  al., 2015; Hong et  al., 2017; Krumm & 
Horvitz, 2007), which can poll from large archives of dis-
crete location-based check-in data and activity tags (Liao 
et  al., 2024), embodied locomotion requires, in essence, 
that the continuum of embodied behavior be sampled 
and that those samples cover encounters at parity with 
lived experiences. By extension, embodied locomotion 
has more to do with affective computing than data sci-
ence (Clough, 2008; Griffin et al., 2007; Picard, 2000; Tor-
rens & Griffin, 2013; Torrens et al., 2011, 2012). Looking 
to the future, it is also feasible to consider that humans 
are being joined on streetscapes by moving machines. 
These machines are also embodied (Chrisley, 2003; Dour-
ish, 2001; Duan et al., 2022), with the result that human–
computer embodiment in locomotion is also a near-term 
consideration. Consider, for example, how semi-auton-
omous vehicles and robots that are tasked with mov-
ing through streetscapes using synthetic perception and 
sensorimotor control (Bojarski et al., 2016; LeCun et al., 
2005), which must sense and make sense of streetscape 
dynamics to effect motion that is efficient and compli-
ant with situational norms of those streetscapes. At face 
value, this begets consideration of a form of streetscape 
AI, one which could share the same viewsheds as pedes-
trians and drivers and possibly reason about how to 
move. Any applications of a streetscape AI, then, would 
face the same challenges that NRT addresses in empiri-
cal application: heavy individualization and contextual-
ization that would render both training and application 
of AI difficult to resolve (Guo & Liu, 2024). There is con-
ceivably an opening in encounter-based modeling for an 
adjacent consideration of hyper-local situational aware-
ness for streetscape AI. Ideally, this situational awareness 
would maintain existing pathways for synthetic percep-
tion (particularly the impressive benefits that can be 
garnered from deep learning on visual data drawn from 
streetscape viewsheds), while also facilitating reason-
ing on the very individualized, dynamic, and non-gen-
eralizable context that enliven and animate streetscapes 
in everyday life. With this reasoning, one quickly jumps 
toward considerations of modeling embodied locomo-
tion as a form of autonomous machine intelligence (AMI) 
(LeCun, 2022). Indeed, it would be straightforward to 
argue that the configurator, perception, cost, short-term 
memory, and actor modules of LeCun’s (2022) scheme 
for AMI could connect to his world model as embodied 
locomotion.

Our aims for the Sidewalk2Synth pipeline share some 
of the themes being developed for Sim2Real as a tool for 
training autonomous driving training (Doersch & Zisser-
man, 2019; Farley et al., 2023; Pasios & Nikolaidis, 2024). 
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Generally, Sim2Real is delivered as three-dimensional 
visual simulations that are used to produce training 
data (usually two-dimensional imagery) for autonomous 
vehicle AI (usually as deep learning). A handful of Sim-
2Real models has been extended to the task of training 
machines for road-crossings, where pedestrian motion 
and vehicle motion come into contact, for example, 
within contextual factors of crossing spaces and cross-
ing signals. Haoran et  al. (2023) introduced a system 
for training robot motion control in simulated physical 
scenes using Unity 3D. They used indoor scenes without 
representation of humans. Ouyang et  al. (2018) showed 
that image processing could be used to insert synthetic 
images of pedestrians into streetscape scenes, which 
could be used as training data for vehicle collision detec-
tion routines. A system with similar aims was introduced 
by Strauss et al. (2021). Farley et al. (2023) demonstrated 
that the infusion of simulated pedestrian data to super-
vised deep learning could increase vehicle’s success in 
identifying pedestrian collisions by over 27%. They com-
bined deep learning on synthetic static pedestrian scenes 
from the Multiple Object Tracking Benchmark (MOT-
Synth) dataset (Fabbri et al., 2021), as well as real road-
way scenes of pedestrians as a subset of the Cityscapes 
dataset (Cordts et al., 2016), “CityPersons” (Zhang et al., 
2017). This represents a distinction from the approach 
of Ouyang et  al. (2018), in that simulations are used to 
generate pedestrians, which are animated in scenes and 
taken as screengrabs for training.

Nie et al. (2022) introduced a novel twist on this pipe-
line, inserting virtual pedestrians with unusual, synthet-
ically-generated poses into image-based training data to 
account for edge cases in pedestrian detection. Typically, 
the synthetic pedestrian simulations that feed such pipe-
lines are abstract in their representation of locomotion 
behavior, which is understandable as they focus solely on 
pedestrian detection, not behavioral inference. We also 
point out the important distinction that such data are 
usually static, and do not include movement of pedestri-
ans within the images. Also, synthetic humans are gener-
ally generated for pedestrianized environments, without 
ambient vehicles in the scenes. Pasios and Nikolaidis 
(2024) recently showed that the CARLA vehicle simu-
lator (Dosovitskiy et  al., 2017) can be used to generate 
vehicle scenes for Sim2Real pipelines, but again this is 
missing pedestrians and vehicles in the same streetscape. 
Bucking this trend, however, Vázquez et  al. (2014) 
showed that data from driving scenes of the Half Life 2 
videogame (Valve Corporation, 2004) (which includes 
procedurally-generated walking avatars) can be used to 
train deep learning schemes for pedestrian detection.

An approach that sits in the same orbit as the ideas 
that we propose in this paper was introduced by Yang 

et  al. (2021), taking advantage of high-definition map-
ping of urban environments (HD maps (Zhang et  al., 
2023)). They introduce an new twist on Sim2Real, with 
an interim step of reconstructing synthetic (but frozen) 
pedestrians from 64-beam LiDAR data (they used the 
ATG4D data set from Yang et  al. (2018)), which they 
used for subsequent training. Yang et  al. (2023) and 
Wang et  al. (2023) demonstrated that this could also 
be done with LiDAR for reconstruction of vehicles and 
subsequent insertion of representative (static) models 
back into driving scenes. In essence, the method dis-
tills into a sort of mixed reality approach to generating 
more useful training scenes for autonomous driving 
algorithms. Work developed by Priisalu et  al. (2021) 
is closely aligned in objectives to our paper. Priisalu 
et al. (2021) endeavored to build a “semantic pedestrian 
locomotion (SPL)” (p. 2) agent that uses reinforcement 
learning to produce motion control that is semanti-
cally related to a given scene. They developed SPL for 
LiDAR directly: agents appear as point clouds and 
move through synthetic LiDAR scenes, which match-
ing synthetic vehicles may react to. A critical point, 
with respect to SPL, is that the agent is supplied with 
a complete map of the scene a priori. In other words, 
the trajectories of the agents are reconstructed (using 
geometry) rather than arriving as the product of behav-
ioral agency. The reinforcement learning policy is 
derived from OpenAI’s Generative Adversarial Imita-
tion Learning (GAIL) (Ho & Ermon, 2016), which has 
also been used for generating vehicle motion trajec-
tories (Bhattacharyya et  al., 2022; Choi et  al., 2021). 
A tangential approach is described in Huynh and 
Alaghband (2019), but using scene-based Long Short-
Term Memory (LSTM) to provide fencing for a trajec-
tory-driven movement LSTM. A salient point that we 
would like to raise is that these pipelines operate with 
a great deal of “god-level” information, in the forms of 
complete views of scenes, geometric details, and geo-
graphic information, and sometimes trajectory priors 
of objects in the scene. Their goals are generally based 
around “What Happens Next?” type questions, with 
vector-based answers as a return, rather than striving 
for novel behavioral agency. This is not intended to be 
a complaint, rather, we wish to illustrate a distinction 
relative to our aimed functionality. Recent approaches 
are advancing toward agency from these principles, for 
example by building indices of socio-geographic inter-
actions (Bilro et al., 2022) from trajectory-indexed field 
of view estimates, accessible via Sparse Motion Fields 
(SMFs) (Barata et al., 2021) or from state data that can 
be garnered from a given scene (Zhang et  al., 2022). 
Our approach to Sidewalk2Synth, we reason, carries 
these promising trends forward in some new directions.
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There has been quite a large volume of recent activity 
in developing Vision-Language Models (VLMs) that are 
trained on streetscape and pedestrian scenes. For exam-
ple, the Text360Nav system was developed to provide 
navigation text prompts to users of 360 degree cameras, 
to assist in mitigating visual challenges and distractions 
when walking (Nishimura et  al., 2024). It was demon-
strated on five hours of video data from New York City 
and Kanto, Japan. A VLM for pedestrian attribute rec-
ognition (PAR) was introduced by (Ngo et  al., 2024) to 
essentially marry (through multi-modality) a human-in-
image detector with a VLM, using Mixture-of-Experts 
(Yuksel et  al., 2012) to establish consensus (CrossPAR). 
Wang et  al. (2024) developed a related pipeline (spatio-
temporal side-tuning) with concatenation of visual and 
textual tokens in a fusion transformer (Vs et  al., 2022). 
Yang et al. (2024) introduced the Prompt-driven Seman-
tic Guidance (PromptSG) scheme, to make better use 
of the implied meaning of text prompts to the VLM on 
input. Side-tuning, PromptSG, CrossPAR, and the related 
SequencePAR approach developed by (Jin et al., 2023) all 
make use of the Contrastive Language-Image Pre-Train-
ing (CLIP) LLM to associate images with query tokens 
that can accept text prompts from a traditional LLM 
framework. For example, Jin et  al. (2023) use Sequen-
cePAR to generate text data on pedestrian sex, age, and 
clothing. Generally, VLM approaches share some of 
the front-end of our Sidewalk2Synth pipeline, but the 
end product is quite different in form and distinct in its 
goals. VLMs usually begin with images of naturalistic 
scenes, either drawn from online video repositories, col-
lected by researchers, or in some cases acquired from 
streetside robots. Imagery is subjected to convolutional 
filters and artificial neural networks for deep learning 
on the features that are extracted by convolution, and 
image regions that are matched to pertinent urban and 
pedestrian features. As we will show, we adopt a related 
approach at the front stage of Sidewalk2Synth. For 
VLMs, the deeply-learned data are then passed to a large 
language model (LLM), which is tasked with describing—
in text—what elements of the scene could be salient to a 
user. LLMs such as BLIP (Bootstrapping Language-Image 
Pre-training for Unified Vision-Language Understand-
ing and Generation) have been shown to be well suited to 
pedestrian and street tasks, for which there is often a lot 
of shifting dynamic detail to consider. We note that, first, 
the output for VLMs is scene-based: most VLMs aim to 
describe (by modeling in a linguistic frame) a holistic 
scene. Usually, they aim to produce contextual under-
standing of a scene’s environment (Song et  al., 2025). 
Any behavior would then be inferred from that environ-
ment (e.g., a zebra crossing is for pedestrian movement 
across roads). This can approximate behavior through 

tokenization, but it essentially involves matching a text 
class to an object class. Second, we note that the output 
of VLMs is usually text, specifically a single text descrip-
tion (e.g., that the image contains “a group of people 
walking around with umbrellas”, (Nishimura et al., 2024, 
15,786)). Some innovative work has been accomplished 
in outputting trajectories, using the LG-Traj approach 
(LLM-Guided Trajectory) (Chib & Singh, 2024) from 
VLMs. LG-Traj takes motion cues from deep learning, 
couples them with learned trajectories from bounding 
box tracing between images, and predicts future motion 
in the next few image frames by image extrapolation (not 
by behavioral modeling we should note). LG-Traj outputs 
a textual description of what it thinks the trajectory will 
be, e.g., “According to the given set of coordinates, the 
motion patterns is a standing still motion” (Chib & Singh, 
2024, 6). The VL-TGS approach of (Song et  al., 2025) 
aims to enable maples navigation by robots, using LiDAR 
data in conjunction with VLMs for scene understanding. 
In this case, the trajectories that are suggested by LiDAR 
localization and mapping are down-selected with the 
assistance of VLM prompts that decide relative travers-
ability as guidance to robot motion planning. A variation 
of VL-TGS is shown by (Kong et al., 2025), as “autospa-
tial”, which includes some contextual details of pedestrian 
encounters by robots in a similar motion planning pipe-
line. Autospatial will output pedestrian-relevant naviga-
tion details from the image map of the scene, e.g., “The 
pedestrian is slightly to the right of the robot, at a very 
close distance. The pedestrian is moving towards west.” 
(Kong et  al., 2025, 3). The robot can, then, elect move-
ment rules that relate specifically to pedestrian encoun-
ters. In each of the approaches mentioned above, the 
“model” in a VLM is a language model: it essentially seg-
ments a visual image, bounds and frames objects within 
it, and classifies them to well-trained data sets (or user 
annotations). The end-sequencing of the relative arrange-
ment of those results is handled by the LLM. LLMs are 
very different to agent-based behavioral models. Given 
image-recognized objects, their counts, which side of 
the image objects appear on, and what their object clas-
sification is most probably to be, the LLM outputs some 
textual description. This is a fantastic accomplishment, 
which could be useful in providing AI-type assistants 
for navigation, for assistive technology for pedestrians 
with visual challenges, and for quickly providing input to 
driver awareness systems in vehicles. There are, however, 
some doubts about the utility of VLMs beyond recogni-
tion tasks. For example, Wang et  al. (2024) investigated 
whether VLMs could support human gesture recog-
nition and found them to be unsuitable for the task. 
Huang et al. (2024) cautioned that VLMs have problems 
in conceptualizing and communicating distance-based 
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and motion-relevant relationships between pedestri-
ans and vehicles: a task that is critical for our applica-
tions to streetscape phenomena. What we are trying to 
accomplish is quite different than recognition, and our 
approach is thus very different than that of VLM. We 
aim to build a behavioral model of the scenes that we 
study, and to translate those behaviors into agent-based 
rules that can form the basis of what-if simulation. In this 
sense, the back-end of our pipeline and its outputs depart 
very significantly from the VLM approach. Our approach 
is capable of polling objects from images by deep-learn-
ing, but we then attempt to simulate (not just describ-
ing with text) how they “work together”, geographically 
through space–time action, reaction, interaction, and 
transactions (social affordances, gestures, body language, 
etc.). Notably, our approach feeds deeply-learned insight 
into agents, and not into tokens.

3 � Observing and measuring embodied locomotion 
in real‑world bouts of encounter

The Sidewalk2Synth pipeline begins on real streetscapes, 
with real people, doing real things, in real context (Fig. 2). 
We are largely interested in the factors that embody peo-
ple in locomotion on, across, and through streetscapes, 
and so we established an observational protocol to col-
lect data on embodied streetscape encounters that come 
into being during pedestrian locomotion. Addition-
ally, the observational protocol is designed to build a 

typology of those encounters, and then where possible to 
add measurements and valence to them. We approached 
this through (1) fixed site observations on streetscapes 
(Fig.  3), and (2) immersive first-person video diaries of 
pedestrians while engaged in embodied locomotion. In 
both cases, the data that were produced were subjected 
to subsequent analysis to build contextual signals from 
the encounters. Our data collection replicated several 
computer vision and deep learning schemes used in 
autonomous systems, which use sensor modalities that 
match equipment commonly used by vehicles and robots 
for artificial perception (e.g., simultaneous localization 
and mapping (Sun et al., 2023)). Sensed observations and 
measurements then became inputs to our motion control 
models and simulations in a subsequent step.

We engaged in a long-term observational study of 
streetscape sites around New York City (downtown and 
suburbs) over a period of a 18 months, collecting ~ 1,400 
observations of streetscape encounters at 35 different 
roadside crossings, with different physical environments 
and activity profiles (see for a sample of the observation 
areas, which vary by urban design, architecture, urban-
ity, crowding, lighting, weather, on-street activity, etc.). 
At each site, we built an atlas of streetscape conditions 
to include site factors, physical configuration, civic infra-
structure, weather and time of day conditions. The atlas 
was codified to a shared Geographic Information System 
(GIS). This was supplemented with 3D data acquired by 

Fig. 2  A selection of observation sites around New York City’s dense central city and outlying suburbs
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LiDAR for sequences of streetscape activity, which gen-
erated allocentric (thing-to-thing) distance measures and 
timing (to sub-centimeter, sub-second resolution). The 
census was built for individuals, as well as dyads, groups, 
and crowds, as well as single vehicles and collective traffic 
phenomena. To accommodate sensor platforms that are 
used in vehicle and robot autonomy, we additionally col-
lected RGB video footage from fixed platforms.

To this base, we added hand-coded observation data of 
streetscape encounters, itemized, classified, and meas-
ured using a modification to the Interpersonal Assess-
ment (IPA) framework (Torrens & Griffin, 2013). We 
first established a set of candidate motion factors in a 
pre-survey round, followed by a settled set of factors in 
a survey round, during which we also ascribed valence 
per-factor. In coding locomotion and embodiment fac-
tors, we focused on individual factors of demographics, 
time geography, ambient awareness, speed, ambulation, 
object use (including phone use), and risk-taking (when 
crossing roads). We also coded for site-specific factors of 
weather, crossing signals, vehicle lanes, and pedestrian 
crowding. At each observation site, a trained team of 
socio-behavioral observers marked-up encounters using 
a modified Interpersonal Process Code (IPC) on a tablet 
device (Griffin, 2018). These data were fused to the com-
mon GIS (Griffin et al., 2007; Torrens et al., 2011, 2012).

First-person (immersive and ego-embodied) data were 
collected by human participants that were recruited to 
wear a chest-mounted camera with a high-resolution 

GPS and networked smart watch while engaging in 
routine streetscape activities. We collected data over a 
period of 18  months, for a total of 242  h of immersive 
video data (Torrens & Kim, 2024b). Taken in totality, the 
immersive observation data presents a first person record 
of embodied locomotion encounters on streetscapes 
around New York City (both downtown areas of New 
York as well as outlying suburban locations), across a 
range of encounters across dimensions of place, built 
environment, physical setting, time of day, urban activity, 
season, and events. We also collected participants’ GPS 
traces (and sub-trajectories) for these encounters while 
they were in locomotion.

Collectively, then, the fixed observations (atlas, census, 
coded encounter) yielded a set of initial conditions for 
establishing streetscapes by site type, by time of day, by 
crossing scenario, and by social environment. To sample 
locomotion through sites, we relied on immersive data. 
Together, this constitutes the first “sidewalk” portion of 
Sidewalk2Synth, essentially derived from raw data.

To supplement this, we then added machine-inter-
preted information on the same scenes. This added 
value to the encounter data but also had the advantage 
of allowing us to look at the sorts of sensed realities that 
might be interpreted by embodied and mobile machines 
in streetscapes (vehicles and robots). We ran the first-
person and third-person video footage through machine 
learning routines to automatically label scene objects 
(Fig. 4). We used YOLO object detection (Redmon et al., 

Fig. 3  Top: hand-coded labelling of motion parameters in real-world settings. Bottom: LiDAR measurement of spacings and timings in busy motion 
scenes
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2016), and OpenPose (Cao et  al., 2018) and Detectron2 
(Wu et  al., 2019) pose detection and motion skeleton 
extraction, to detect and frame poses for humans that 
were segmented and identified in the scene. We then 
used a customized scheme to estimate actions from those 
poses and to ascribe three-dimensional bounding boxes 
for pedestrians and vehicles. We also deployed DensePose 
(Güler et al., 2018) to build pseudo-meshes for pedestri-
ans that resulted. To optimize machine learning, we ran 
the analyses on a customized Singularity (Kurtzer et al., 
2017) container on our local high-performance comput-
ing cluster.

Our observations of real-world motion on streetscapes 
revealed the key factors that we considered in our model 
and simulations. We noted key differences in locomotion 
relative to different configurations of group behavior, and 
people’s embodiment to other pedestrians in very close 
proximity ahead of crossing.

1.	 People moving as part of a deliberative dyad or group 
of more than two were much more likely to either not 
check their surroundings (particularly when crossing 
the road), or to rely on incorrect checks (e.g., looking 
in the wrong direction when facing oncoming traffic).

2.	 Those in dyads and groups also tended to move more 
slowly than people moving as individuals. People 
moving in groups were also less likely to be using a 
phone than those moving as individuals.

3.	 We also observed differences in motion due to ambi-
ent pedestrian and vehicle traffic. For relatively placid 
motion scenes, for which there was relatively low 
foot and vehicle traffic, we saw that people moved 
more slowly when crossing roadways and that 
they were more apt to obey crossing signals com-
pared to pedestrians moving in comparatively busy 
streetscape scenes. Colloquially, this suggests a meas-
ure of relative care in motion in low-density scenes. 
In busier settings, people were observed to move 
more quickly and with less care to crossing signals. 
We attribute this to pedestrians either conforming to 
peer norms in a temporary crossing group (Pfeffer & 
Hunter, 2013), switching from individual locomotion 
to engaging in group movement (Coleman & James, 
1961; Fernandez & Deneubourg, 2011; Sperber et al., 
2019) behavior by temporary “flocking” (matching of 
velocity, heading relative to nearest-neighbors) (Bikh-
chandani et al., 1998; Lukeman et al., 2010; Reynolds, 
1993), or pedestrians feeling that they had the cover 

Fig. 4  Machine learning motion details from first-person video footage
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of the crossing peloton while moving (Das et  al., 
2005; Faria et  al., 2010; Harrell, 1991; Rosenbloom, 
2009).

Based on these observations, we resolved to estab-
lish experimental simulation scenarios that would per-
mit us (1) to vary the number of crossing pedestrians 
to include dyads and groups; (2) to vary the ambient 
pedestrian density; and (3) endow agents with vary-
ing care and risk-taking strategies. As we will discuss 
later in the paper (Sect.  5.2.1), these factors converge 
conceptually to topics of peer effects (Pfeffer & Hunter, 
2013) in locomotion (Gorrini et  al., 2014) and social 
embodiment (Meier et  al., 2012; Niedenthal et  al., 
2005).

4 � High‑fidelity motion reconstruction by motion 
capture

In outdoor observation, we learned that people’s man-
nerisms while in embodied locomotion can provide 
information of their behavior: indicators of motion 
intent, decision-making, and actions that connect to 
“enactable” attributes of that motion as future steering, 
velocity, and stopping rules. In our coded observation, 
we also noted particular mannerisms that we were able 
to associate with embodied locomotion.

•	 Head-checking as a signal of people’s interest in and 
awareness of ambient conditions,

•	 Hesitation as an indicator of reassessment of loco-
motion once its embodied effects were confirmed or 
challenged by next steps,

•	 Ambulation (of body extremities, usually swung in a 
particular style) as a motif of locomotion,

•	 Encumbrance when pedestrians were carrying or 
pushing/pulling objects, and

•	 Leaning as a mark of impending locomotion and 
desired or considered embodiment (Fig. 5).

We coded our observations directly for these manner-
isms when surveying natural locomotion scenes. This is 
exactly the sort of high-resolution detail that we hope to 
add to the simulations. We reason that body language 
and other nonverbal communications (NVC) signals 
(Andersen, 2008; Collett & Marsh, 1981; De Gelder, 2006; 
Ekman & Friesen, 1981; Kudoh & Matsumoto, 1985; 
Marques et  al., 2025; Mehrabian, 1968; Scheflen, 1972), 
specifically, can serve as strong (and reliable) indicators 
of underlying behaviors (Torrens, 2014a, 2014b, 2016b, 
2018a; Torrens & Gu, 2023). Further, we propose that 
NVCs can help to fine-tune agency in our models and 
simulations in ways that allow embodied locomotion to 
be embedded synthetically in simulation, especially in 
mechanisms that human users of the pipeline can inter-
act with in virtual reality, with verisimilitude that matches 
their embodiment to real world streetscape encounters.

To examine NVC factors further, we examined the 
nature and use of mannerisms with motion capture in 
two methodologies. First, we processed first-person 
and third-person videos that were collected during our 
observational fieldwork through a deep-learning scheme 
for pose detection. We used OpenPose (Cao et al., 2017, 
2018) to build skeletons of human motion (body lan-
guage as well as gaze direction) from partial affinity fields. 
The procedure involves segmenting video for the pres-
ence of humans against a given background scene, then 
extracting partial affinity fields, and using those fields to 
estimate body parts ahead of building a graph-based skel-
eton of those parts as an estimated pose (Fig. 6). Deep-
learned poses were used to index general sets of motion 
behavior to match the hand-coded observations from 
our fieldwork. In several instances, we were also able to 
reconcile distances and timing for these motions using 
cross-indexed LiDAR observations.

Second, we recruited human participants to engage 
in motion exercises in a studio mock-up of a physical 
streetscape (Fig.  7), using marker-based motion capture 
to collect data on the positioning and timing of their 

Fig. 5  Examples of mannerisms for different locomotion actions



Page 11 of 36Torrens and Kim ﻿Urban Informatics            (2025) 4:16 	

body movement at very high resolution (centimeter-level 
localization and up to 800 Hz in timing), each indexed to 
action states as well as to motion velocities. Moreover, we 
were able to collect motion data for different dyads and 
groups (up to ten people sharing a session) and for differ-
ent motion contexts (crossing a road, using a phone, nav-
igating through a crowd, participating in unidirectional 
flow, interrupting predominant pedestrian flow, etc.).

Motion capture by pose detection on video is useful in 
isolating and delineating rough approximations of human 
poses in locomotion, and these can further be classified 
into coarse locomotion actions by automated means. 
Deep learning to accomplish this can be run for large 
crowds of people, although occlusion problems will per-
sist for humans that are partially or fully occluded in the 
scene. Video-based motion capture is relatively “cheap” 
in researcher involvement. In section  11, we show that 
it can be fully automated on edge devices which can be 
placed close to motion scenes such as sidewalks (Potdar 
& Torrens, 2019).

Our studio-based motion capture produces very high-
resolution and high-fidelity motion data. However, the 
behaviors that we can capture are limited to indoor sce-
narios. We approximated outdoor locomotion by asking 

participants in the studio to move as they would nor-
mally do in the real world, and by inviting them to move 
in reaction to scenes of real-world urban scenes that were 
projected onto a large screen next to them. Ultimately 
indoor behavior is a proxy for what would really occur 
in the messy context of an urban scene. Nonetheless, 
studio-based motion capture produces real locomotion 
data, and we were able to collect studio data for groups 
of interacting people (simultaneously, ten at a time 
at ~ 400 Hz) to reproduce dyadic and group scenarios, as 
well as small bouts of pedestrian flow.

As we will discuss (Sect. 5), we transferred the motion 
capture data directly to agent-automata in simula-
tion, so that agent-based pedestrians would move with 
realistic mannerisms and body language. Real human 
user-participants can then be immersed in the simu-
lation (see Sect.  7), which may then present as open to 
social embodiment with these mannerisms on agents. 
Studio-based motion capture data can be used directly 
to represent agent motion. The deep-learned (video-
sourced) pose skeletons are lower in resolution than the 
(motion-captured and resolved) skeletal rigs that we 
use in our agent-automata model are, and so we do not 
transfer video-learned poses directly into our simulation 

Fig. 6  Machine learning poses from first-person video footage
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scenarios, although, as we will discuss in Section, these 
video poses can be used in end-to-end versions of the 
pipeline that are designed to run outdoors in real-time.

5 � Simulating pedestrians as automata 
with strong‑agency AI

The “Sidewalk” components of Sidewalk2Synth are 
treated using observation and reconstruction as dis-
cussed in Sects.  3 and 4. These are designed to feed 
insight to a second half of the pipeline, the “Synth” com-
ponent, which is tasked with modeling those obser-
vations and producing synthetic representations of 
streetscapes (both physical and social) in the form of 
simulations. Users of the system will directly interface 
with the synthetic simulation, embodying themselves to 
the streetscape encounters and environments that are 
represented. Our intent, in designing the synthetic com-
ponents, is to produce high-fidelity parity with our real-
world observations, such that the system can evoke real 
embodied locomotion and related behavior from users. 
A first step is to generate synthetic pedestrians, which 

will provide both physical (collision objects) and social 
(NVC counterfoils) environments. In Sect. 6, we describe 
AI for vehicles and traffic. The integration of the human 
(pedestrian) automata and vehicle (driver) automata in 
a decision tree framework is shown in Fig.  8. The data 
architecture that feeds the decision tree is illustrated in 
Fig. 9.

Embodied locomotion is intertwined with lived expe-
riences that are acted out with sensation and physical 
and social contact, with the exchange of mannerisms 
and depth of feeling that implies. Sidewalk2Synth would 
therefore benefit from fidelity in its congruence to real-
ity: the things in the simulation should behave as they 
would in their real-world counterparts. Synthetic vehi-
cles should move as they do on real roads, around real 
crossings, and with faithful response to pedestrians. Sim-
ilarly, human automata must take on agency that is faith-
ful with respect to real behavior, including both rational 
and often irrational action to dynamic conditions as they 
unfold around them. There are cases when substitutes for 
motion (such as using particle physics in lieu of human 

Fig. 7  Studio marker-based capture of high-resolution and high-fidelity motion
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Fig. 8  Agent-automata components come together from six interworking models: a path-planner, a waypoint sequencer, a steering model, 
and a driver model. These are integrated with computational models (i.e., algorithmic and heuristic rather than behavioral) for motion sequencing 
and traffic and crosswalk signaling (Torrens & Kim, 2024b)

Fig. 9  The data architecture that feeds Sidewalk2Synth in run-time, derived from real-time and run-time feeds sourced in the virtual geographic 
environment (VGE), GIS, animation, motion-blending and sequencing, and virtual reality hardware. These feeds are managed in a state reservoir 
before being passed to agent automata and other simulation computation (which are detailed in Fig. 8) (Torrens & Kim, 2024b)
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locomotion) could be useful in a simulation effort, e.g., 
if movement is just an input to a particular simulation 
system as flow or occupancy counts (Johansson et  al., 
2012; Treuille et  al., 2006). However, for our purposes, 
locomotion is the output, and so we need realistic behav-
ior rather than abstractions. Sidewalk2Synth would also 
benefit from maintaining congruence to reality in its ver-
isimilitude. Because it is designed to be used by human 
users as a way to experiment with their (real) embodi-
ment, Sidewalk2Synth should evoke realistic behaviors 
from its users. Specifically, it should conjure realistic 
embodiment to both social and physical context. Users 
of the simulation should feel compelled to engage a full 
set of their motion skills, mannerisms, and habits, and 
they should react with distance and timing that matches 
counterpart context in reality. If the simulation is veri-
similar, it could be useful as a means for testing against 
real-world parameters.

We approached the first topic of congruence—by fidel-
ity—using strong agents. The second facet of congru-
ence—by verisimilitude—is tackled using mobile VR 
technology (mVR) designed to transpose real human 
users directly into the simulation as mobile bodies. In the 
text that follows, we discuss the design of agent-autom-
ata; transposition of real human users into the simulation 
is detailed in Sect. 7.

5.1 � Weak or strong agency for motion control?
The use of weak agents is a commonplace approach in 
applied simulation, where the intent is to produce either 
visual or statistical movement patterns, with valid-
ity of their flow usually assessed, in aggregate (crowd 
volume) form (Torrens, 2004). Examples include the 
use of physics-based schemes to generate crowd flow 
dynamics based on force-based heuristics (Helbing, 
1992; Helbing & Molnár, 1995) or continuum mechan-
ics (Henderson, 1971), information search schemes 
that can generate dynamic density patterns on grid-
ded spaces (Blue & Adler, 2001; Galea et  al., 1996), or 
graph and roadmap structures that can generate local-
ized activity patterns around particular geometries (Sud 
et al., 2007, 2008). Dedicated motion controllers are also 
widely used, including vector-based schemes (Reynolds, 
1993; Sun et  al., 2023) and reverse velocity approaches 
(Guy et al., 2009) that can be particularly helpful in pro-
ducing localized (but procedural) motion for collision 
avoidance. Similarly, a range of inverse and forward kin-
ematics schemes are available for generating realistic-
appearing ambulation over short bursts of stride-scale 
movement (Badler et  al., 1987, 1991, 1994), as well as 
patch-based motion capture recall schemes (Hyun et al., 
2013; Lee et al., 2006), and these techniques are usefully 
deployed in computer animation and special effects. 

Using combinations of these schemes—usually hando-
vers among algorithms and heuristics at particular scales 
of motion—can produce very realistic-appearing motion 
and movement, with pattern dynamics that hold valid-
ity against real-world motifs. Moreover, several of these 
approaches can be run with significant scale advantages 
so that large mobile crowds of walkers can be simulated 
(Torrens, 2014b), often with individual variance provided 
by parameter files that can be paired to real-world cen-
suses and contexts.

Although there are many exceptions to the follow-
ing statement, we would assert that for the most part 
such schemes are weak in their fit to actual locomotion 
behavior. They look realistic, but they do not arrive at 
that realism from fidelity to the real world. This is appro-
priate for the usual applications to transport systems or 
planning and policy support for crowd flow management 
(Johansson et al., 2012; Pauls, 1984; Sime, 1995; Tubbs & 
Meacham, 2007). But it is problematic if you ask human 
participants to embody themselves to the simulations. 
People can easily spot fake behavior, and when they do, 
it does little to evoke commensurate embodied interac-
tion. In other words, many existing approaches (which 
we reiterate are never intended for virtual simulation, 
or for testing embodiment, and so this criticism is just 
a scientific one) often focus on generating patterns and 
processes of applied motion and movement scenarios, 
rather than attempting to replicate real motion behavior 
with high-fidelity. This is fine: real behavior is not in their 
remit. They only ever claim weak agency.

An alternative approach could be termed, by contrast, 
as strong agency, dealing with generalized AI as a way 
to build agency that is responsive to simulation condi-
tions in ways that authentically and faithfully match to 
known locomotion conditions and behaviors in the real 
world. Strong agency is quite difficult to accomplish, as 
a lot is unknown about how people control their motion 
in reality, largely because building that understanding can 
quickly lead to problems of infinite variation and over-
whelming context dependency. Simulations can help to 
build this understanding, but again they must be realistic 
and authentic to their real-world, physical companions 
to yield answers relative to that reality, which leads to a 
circularity problem. We do not claim to have a profound 
discovery in this regard: here, we simply state that we 
are trying to advance the science at least a little bit in the 
direction of strong AI.

5.2 � Human automata model
We used automata-based models as the AI driver for 
synthetic pedestrians. We modeled human automata 
on a Geographic Automata System (GAS) structure 
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(Benenson & Torrens, 2003; Torrens & Benenson, 2003), 
which we index as “G” in what follows:

A state descriptor, K, is used to index whether entities 
and objects in the model are able to engage in locomo-
tion. Elsewhere, we have experimented with rule sets RK 
that govern whether something that is usually immov-
able can be brought into motion, e.g., through a forceful 
collision (Torrens, 2014b), but here we simply rely on K 
as an index state for features of the built environment as 
distinct from those that could be mobile. Motion-capable 
human automata can read the states of fixed automata 
for ease in data-processing, but in the examples that we 
show here the K = [fixed] automata were cloistered from 
the parts of the state transition tree that permit locomo-
tion. As each GAS is a finite state machine (Sipper, 1997), 
our approach of enveloping information to pertinent sub-
sets of automata-to-automata interactions reduces the 
computation required to resolve states across the system 
in a given state transition update epoch.

The main “work” of G is then performed among rou-
tines {R}, which are used to control locomotion and its 
(state) information context, per automaton. Transition 
functions RS, RL, and RN govern transition between dis-
crete states in packets of change from t → t + 1. We dis-
tinguish between three overriding functions. Under RS, 
agent-automata can change general agency states. In 
this application, we use states {S} to index pedestrians’ 
attitudes as we will discuss shortly. Transition functions 
{RN} are used to control different aspects of the human 
automata’s perception and awareness. We consider N 
as defining different neighborhoods of encounter and 
information-gathering that automata engage with (and 
embody to) within the spaces that they progress. In this 
sense, then, N determines the ego-centric embodiment 
space of the pedestrian agent, while streetscape spatial 
and space–time progression is governed by RL, such that 
different encounters are continually coming into being in 
N. N therefore constitutes a shifting set of dynamic infor-
mation that unfolds around automata G. Aspects of {RN} 
are designed to provide system-wide access to informa-
tion, as in the case of path-planning. However, we also 
focus dedicated RN functions on enabling hyper-local 
awareness for automata, specifically intended to provide 
information in fleeting moments of space and time that 
can inform simulated pedestrians’ snap judgment based 
on limited (often proximal and partial) appreciation for 
simulation conditions. This model function follows the 
idea of primacy in transient encounter over fixture in 
geographic representation that is described in NRT con-
cepts, especially rhythmanalysis (Lefebvre, 1992/2004), 

G = K, S, RS, L, RL , N, RN; where : RS : St → St+1, RL : Lt → Lt+1, RN : Nt → Nt+1

from the conceptual literature base (Bower, 2014; Cad-
man, 2009; Sheller, 2017).

Automata control their movement routines via rule-set 
RL. Given the significance of locomotion for the appli-
cation sets of Sidewalk2Synth, an expansive set of rules 
{RL} are used (these are discussed in detail in Sect. 5.2.1). 
We provide ego-location by slipstreaming, i.e., by allow-
ing human automata to cross-register (slip) their position 
across a range of different geographies in the simula-
tion, on-the-fly as information flows through their state 
transition schemes (i.e., by streaming) (Torrens, 2015c). 
Slipstreaming is used to practically embed (and to con-
ceptually embody) automata to 3D built-space represen-
tations (Torrens, 2015a), which we handle in model form 
as Virtual Geographic Environments (VGEs) (Chen et al., 
2008; Lin et al., 2015; Torrens, 2015a; Zhang et al., 2007). 
VGEs provide cross-functionality between geometry 
and GIS, which we then further expand as Virtual Real-
ity Environments (Torrens & Gu, 2021, 2023). VRE serve 
as special modalities of VGEs that are delivered to head-
mounted displays (HMDs) with 3D rendering and spatial 
audio that users can immerse themselves into.

We consider a wide range of movement and motion 
conditions through varied localization states {L}. These 
hyper-spaces support localization across different inter-
pretations of geography. These include in a traversal 
graph for pathfinding, in a hierarchical waypoint list for 
navigation and wayfinding, in vector space for steer-
ing and collision detection, in geometric space for col-
lision avoidance and reconciliation, in body-graphs for 
localization of NVCs such as mannerisms and ambula-
tion, and in relational space for gaze dynamics. Given 
our intended applications to streetscapes, we based the 
static built environment for movement on urban scenes, 
which we provided to human automata as GIS data in 
planar view. However, we also provided the same data as 
geometry (CAD and mesh), as well as graph data (navi-
gation meshes). For automata–automata interactions, we 
supplied vector-space data for velocity determination. 
Human automata are allowed to geo-position themselves 
within any one or all of these “geographies” as needed, 
with the result that they avail of a flexible sense of autom-
ata neighborhood input to inform their transition rules.

We designed the system’s human automata with tiered 
spatial agency to represent strong agency at different 
locomotion scales. At scales of a city-block, we used 
transition rules that account for agent-pedestrians’ gross 
movement by path-planning as an RL = [A*] heuristic 
(Hart et al., 1968). At street scale (four sidewalk segments 
within a given city block), we relied on navigation meshes 
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to provide human automata with wayfinding capabilities 
between given waypoints. Following the approach shown 
in Torrens (2018b), we used scaled waypoints with long-
term, medium-term, and short-term goal-locations that 
correspond to navigational features of the built environ-
ment (Costa et  al., 2011; Cutting et  al., 1992; Devlin & 
Bernstein, 1995; Evans et  al., 1984; Gärling & Gärling, 
1988; Raubal & Worboys, 1999; Wang & Cutting, 1999). 
For intra-street movement, we first introduced steering 
behavior, using combinations of the steering routines 
from Reynolds (1999), relying on the pedestrian adap-
tations shown in (Torrens, 2012). However, for colli-
sion detection and avoidance movements that were not 
resolvable by steering, we used reciprocal velocity obsta-
cle algorithms (Fiorini & Shiller, 1998; Guy et  al., 2009; 
Snape et al., 2011; van den Berg et al., 2008; Wilkie et al., 
2009).

5.2.1 � Human automata movement routines
We modeled movement on a hierarchical motion 
scheme. For each of the (slipstreamed) spaces that have 
representation in the model as {L}, we developed a 
matching locomotion rule, RL to govern automata’s poll-
ing of hyper-local information (N), the behavior that they 
marshal to that information, and the spatial structures to 
frame this in GIS, VGE, and VRE. In entwining {L} and 
N, we build embodiment methodologically in the model. 
Conceptually, this follows well-researched concepts from 
behavioral geography (Downs & Stea, 1974; Golledge & 
Stimson, 1997; Hart, 1987), which indicate that pedes-
trians generally map motion planning to a set of layered 
scales (Devlin & Bernstein, 1995; Golledge, 1999; Mark 
& Frank, 1996; Siegel & White, 1975). Operationally in 
software, it roughly follows the data flow model shown in 
(Torrens, 2015c).

Motion in trip space by path‑planning  At trip scale, 
pedestrians settle on a route or a route-finding strategy 
between an origin and a destination: usually a source 
and sink for activity, akin to the anchor point hypothe-
sis in cognitive mapping (Couclelis et al., 1987; Kuipers, 
1982; Kuipers & Levitt, 1988). In real situations, this may 
take place over a large geographic area, for example, if 
somebody is walking around a downtown for leisure, or 
the trip could be comparatively short-lived, say from an 
establishment to a road crossing. The important point for 
locomotion over trip-spaces is that a pedestrian will set-
tle on a destination and will devise a path-planning strat-
egy to get there (Hartley et al., 2003; Huber et al., 2014; 
Lenntorp, 1977; Nabbe et al., 2006; Sun et al., 2021). Usu-
ally, this involves a shortest path or some variant, possibly 
with additional weightings for paths that preserve views-
heds of the streetscape (Hillier & Hanson, 1984; Penn, 

2003), or for paths with least right-angle turns (Foltête & 
Piombini, 2007; Omer & Kaplan, 2019), for example. We 
handle path-planning using the A* algorithm (Hart et al., 
1968) for identifying paths with a minimal traversal cost 
(in space and time to destination), which trades off short-
est path (graph) distance from a locomotion origin and 
straight-line distance to a destination, and which parsi-
moniously ekes efficiency by planning toward a specific 
goal rather than solving for all possible goals in the tra-
versal space. We regard this as realistic because pedestri-
ans on a relatively short stretch of streetscape will gener-
ally have just a single goal in mind (Patla & Vickers, 2003) 
and will usually engage in a combined strategy of mini-
mizing space–time distance to that destination, while 
preserving streetscape viewshed (Batty, 1997). This latter 
point, of preserving visibility of the built environment 
is treated in space syntax concepts (Omer & Goldblatt, 
2017; Omer et  al., 2015; Ryu et  al., 2021), for example. 
Again, A* yields a (desirable in this regard) combination 
of both destination-oriented goals in locomotion.

Motion in waypoint space by wayfinding  Within a 
trip, we allow human automata to identify waypoints as 
motion-relevant interim features along a planned path. 
Again, we follow concepts from behavioral geography 
and from psychology that have revealed that walkers 
make use of waypoints as interim goals to track progres-
sion along trip paths (Kato & Takeuchi, 2003; Raubal, 
2001b; Spiers & Maguire, 2008; Wang & Cutting, 1999). 
We relied upon built environment features for our exper-
iments: streetscape curbs, pedestrian crossing locations, 
and pedestrian crossing lights. Essentially, these built 
features serve as hyper-local landmarks for waypoint-
driven navigation and wayfinding (Caduff & Timpf, 2008; 
Evans et al., 1984; Kamil & Cheng, 2001; Omer & Goldb-
latt, 2007; Ruddle et al., 2011). Waypoints were straight-
forwardly represented in VR simulations as observable 
features. We also note that built-feature waypoints on 
streetscapes serve as important boundaries between dif-
ferent activity spaces on the streetscape (chiefly vehicle 
areas, pedestrian areas, and mixtures of the two such as 
crosswalks) (Raubal, 2001a). Critically, passage from one 
of these activity spaces to another may invoke halting 
states for locomotion (Tabibi & Pfeffer, 2003; Torrens & 
Kim, 2024b; Zeedyk et al., 2002). For example, Goldham-
mer et  al. (2014) showed that specific termination gaits 
are used at crosswalks. These locomotion phase shifts 
provide (visual) representation of what Schmidt and Fär-
ber (2009) referred to as “action intention” (p. 300). With 
animation cycles form mocap as NVCs, user-participants 
of our system can then (and do) react to these action 
intentions as visual signals cast by automata-avatars in 
VRE as ambulation, mannerisms, and body language 
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signals of movement intent. Importantly, several of these 
NVCs such as milling behavior, gaze, and waiting can be 
used to represent embodiment to the streetscape. (We 
detail this shortly.)

Motion in cluttered space by steering  While engaged 
in traversing paths and progressing through waypoints, 
pedestrians will pursue a tradeoff between a given and 
a desired locomotion, as an individualized (perspective-
based) affordance of their localized embodiment to the 
streetscape (Raubal, 2008; Withagen & Chemero, 2012). 
This matches experimental evidence from psychology 
that pedestrians follow retinal and/or optical flow when 
moving (Cutting et al., 1992; Matthis et al., 2022). That is, 
unless they detect an interfering physical obstacle, vehi-
cle obstacle, or human obstacle, pedestrians will tend to 
follow a preferred velocity (Hurt & Kram, 2006). (This 
could be leisurely or hurried, and we can code agents to 
adopt these policies on a hyper-individualized basis using 
{S}.) When faced with the novelty of an imposing obsta-
cle, pedestrians will correct their locomotion, usually 
temporarily, to first prioritize negotiation around that 
obstacle and second to return to their desired locomotion 
(Cutting et al., 1995). In some cases, the originally desired 
locomotion (by wayfinding and path-planning) may no 
longer be viable given a pedestrian’s destination goals, in 
which case they may recalculate their “up-scale” locomo-
tion, i.e., they may engage in motion control at scales of 
space and time that are coarser than the immediacy of 
the steering decision (Garbrecht, 1971; Gärling & Gär-
ling, 1988; Hillier & Hanson, 1984). Importantly, we han-
dle most collision situations primarily through steering. 
In other words, pedestrians will try to avoid getting into 
a situation in which they must engage collision avoidance 
routines (Kitazawa & Fujiyama, 2010; Patla & Vickers, 
2003). This is because, first, pedestrians generally avoid 
collisions in the real-world as they are socially and physi-
cally unacceptable in most situations (Olivier et al., 2013), 
and second, because collision detection in motion con-
trol algorithms is generally more costly (and non-faithful 
to real-world motion) in simulation (van den Berg et al., 
2008), it is a quality to circumnavigate in simulation. We 
address steering with algorithms that allow pedestrians 
to take a planned path and its waypoints and to project 
space–time progression along an intervening path, with 
the ability to estimate progress between waypoints and 
with leeway to speed-up to reclaim lost time should they 
need to steer away from an otherwise desired path (Tor-
rens et al., 2012). Steering itself is handled using a variant 
of Reynolds’s (1999) steering behaviors for autonomous 
characters, which allow for very parsimonious resolution 
of steering by seeking and fleeing routines. Space–time 
projection is handled using a modification to space–time 

paths from time geography (Lenntorp, 1977), adapted to 
work with steering behaviors (Torrens, 2012). The geo-
metric hand-off between source and sink nodes for path-
planning, a graph-space for path planning, embedding of 
waypoints as nodes in that space, and the overlay of a rel-
ativistic steering space with distance and time look-ups is 
handled by using slipstreaming in a GIS (Torrens, 2015c). 
In GAS terms, interchanges in state data are interoper-
able across transition rules {RS} and localization data {L} 
can be co-registered (and translated) between different 
layers of L1, L2, …, Ln ∈ {L}. Values of {L} may be stored 
with diverse spatial data structures, and spatial data 
lookups may provide data access schemes for the location 
and (location convention) rule-sets {RL} (Fayyad et  al., 
1996; Fujimura & Samet, 1993; Samet, 1989, 1990; Tor-
rens et al., 2011).

Motion in collision space by detection and avoid‑
ance  When different pedestrians employ different 
paths, drawing them to the same or to varying destina-
tions, and when pedestrians use individualized locomo-
tion to articulate through space and time, it is inevitable 
that they will come into potential collisions (Harrigan, 
2005). Generally, steering is enough to resolve these col-
lisions while absorbing a small decrease to space–time 
progression. However, there are cases in which density 
of activity on a streetscape or multiply-conflicting steer-
ing maneuvers among pedestrians in close proximity 
could produce an impending physical collision (Gérin-
Lajoie et  al., 2008; Hayduk, 1983). Usually, real people 
will detect such collisions and if they are unable to steer 
around them, they will engage in collision-avoidance rou-
tines (Basili et  al., 2013; Collett & Marsh, 1974; Huber 
et  al., 2014; Kitazawa & Fujiyama, 2010; Knorr et  al., 
2016; Lynch et  al., 2018; Olivier et  al., 2012, 2013). In 
psychology, there is evidence that this is an active brain 
process for most walkers (Kennedy et  al., 2009), which 
also has secondary import as social psychology (Aiello 
& Thompson, 1980). In brief, this commonly invokes 
people’s vision, working in tandem with small adjust-
ments to locomotion in very small bundles of space and 
time (Cutting et al., 1995), as brushing motions, twisting 
of the body, and sidestepping (Ciolek, 1983), i.e., strong 
physical embodiment that directly impacts locomotion 
response. In each case, it is usually necessary for a pedes-
trian to come to a stop or near to a stop in their desired 
locomotion to resolve the collision. Because there are two 
parties involved in the collision, the maneuvers must be 
balanced in a dialectic (Olivier et al., 2012). This is well-
treated algorithmically by Velocity Obstacles (VOs) (Fior-
ini & Shiller, 1998; Wilkie et al., 2009) and by Reciprocal 
Velocity Obstacles (RVOs) (van den Berg et al., 2008). For 
Sidewalk2Synth we use RVOs for collision avoidance; we 
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show this implementation in more detail in Torrens and 
Gu (2021).

Motion in articulation space by animation cycling  Given 
a motion plan, put into effect as RL simultaneously across 
multiple scales of the streetscape, agent-pedestrians must 
then generate realistic body motions to both match and 
satisfy that motion. In real life, such motion is highly 
individual as gait (Baker & Hart, 2013) and other ambu-
latory factors that shift based on walking speed (Jordan 
et  al., 2007), ability, and inclination, including many 
dimensions of desired walking behavior, skill, energy, and 
effort (Chung & Wang, 2010). Evidence from psychology 
points to a close coupling between perception (which we 
can regard as being situational and embodied) and the 
body motion that produces physical locomotion (Kon-
czak, 1994; Pailhous et  al., 1990; Pearson, 2004; Salinas 
et  al., 2017) (which we can regard as sensory). Walking 
behavior may also be contextually dependent upon inter-
personal factors (Cutting & Kozlowski, 1977; Montepare 
et al., 1987), the given crowd density in a particular part 
of a streetscape (Hans & Hans, 2015), norms of particu-
lar social surroundings (people do not generally sprint 
through culturally sensitive areas and sacred spaces), 
civic expectations (waiting at a road crossing when the 
pedestrian signal indicates “do not walk”), peer pressure 
between socially-influenceable pedestrians (Pfeffer & 
Hunter, 2013), activity purpose (tourism vs commuting 
to school, for example), as well as public rituals such as 
yielding behavior in a potential collision, entering queues, 
taking turns at doors to establishments, and so on (Mon-
dada & Tekin, 2023). The physical and built conditions 
of a streetscape also have obvious impact on gait and 
other forms of ambulation that tangibly produce locomo-
tion (Franěk, 2013; Thies et  al., 2005). At the boundary 
between different expected locomotion domains (roads 
as a space where one would expect vehicles to dominate; 
sidewalks as a space where pedestrians would usually 
have leeway), action intentions may be visible in relevant 
non-verbal signals. We represent these with specific ani-
mation cycles (waiting by idling at a crosswalk, for exam-
ple as a signal to users that agent-automata are waiting 
for a pedestrian signal) (Carol & Roslyn, 2007; Gerus-
chat et  al., 2003; Harrell, 1991; Oudejans et  al., 1996). 
The number of potential factors at play in reproducing 
these behaviors in simulation are massive, and realisti-
cally beyond reach in current computer science outside 
of inverse and forward kinematics (Tolani et  al., 2000; 
Zhao & Badler, 1994). In our pipeline, we sidestepped 
their implementation with authenticity as transition 
rules, and instead we opted for realistic-appearing behav-
iors by using animation cycling (Arikan & Forsyth, 2002; 
Safonova et  al., 2004), but in real motion capture data. 

Importantly, we stress that animation is only used to pro-
duce the kinematics of walking; all other behaviors that 
lead to those steps are from automata AI. Specifically, we 
recorded motion capture data of real people’s movement 
behavior for different speeds of locomotion, different 
beginning and halting conditions, and different steering 
maneuvers. We then indexed these animations to agents’ 
velocity in simulation, as well as to particular action con-
ditions (waiting at a roadside by using milling behavior or 
idle swaying, for example). We used motion retargeting 
(Gleicher, 1998) to adapt motion capture data to pedes-
trian representations of differing sex and height.

6 � Vehicle automata model
To investigate motion control at the roadside curb and 
during crossing, we also built a vehicle driver model. This 
was established using a geographic automata version of 
the Intelligent Driver Model (IDM). The IDM (Kest-
ing et al., 2010) provides microscopic driving dynamics, 
which collectively can also yield macroscopic phenomena 
of traffic. However, our model is open to the introduc-
tion of driver, vehicle, and traffic models and we have also 
experimented with the CARLA driving model (Dosovit-
skiy et  al., 2017; Torrens & Gu, 2023) as well as purely 
macroscopic traffic flow models (Torrens & Gu, 2021). 
We do not go into significant detail of the driving autom-
ata modifications here and instead we refer the reader to 
the original IDM methodology in Kesting et  al. (2010). 
Our extension of the IDM is discussed in more detail 
in Kim and Torrens (2024); Torrens and Kim (2024a, 
2024b). For the pipeline experiments that we show here, 
we included vehicle models for coupes, sedans, sports 
utility vehicles, vans, and trucks, each with different driv-
ing norms and with acceleration profiles that match the 
vehicle type (Fig. 10).

7 � Instantiating Sidewalk2Synth as an immersive, 
traversable virtual reality environment

The final piece of the Sidewalk2Synth pipeline involves 
opening-up the system to live embodied locomotion 
form real human users. To support this, we first built 
a set of VGEs to depict different streetscapes, which 
we made accessible via mobile Head Mounted Displays 
(mHMD) to user participants (see a viewscreen from 
the mHMD as well as a user-participant in the studio 
in Fig.  10, at the bottom). The mHMD allowed users 
to view streetscapes in three dimensions and to listen 
to vehicles with spatial audio. Importantly, the mHMD 
enabled users to engage their own natural, physical, 
tangible locomotion control to advance through the 
VGE and to look around and gaze within the simu-
lated scenes. We enabled this by launching the mHMD 
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in a studio space that users could physically traverse. 
Indeed, this locomotion takes place in a physical stu-
dio with one-to-one distance mapping to the VGE 
streetscape that is represented in the simulation. Sec-
ond, we coupled the agent-pedestrian and agent-driver 
models to the VGE, populating the VR streetscapes 
with dynamic (but individual-based), crowd patterns 
and traffic patterns. We additionally enabled pedes-
trian crossing signals and traffic signals within the 
simulated streetscapes. Third, we recruited cohorts of 

real human users to engage in a series of motion con-
trol trials within the VR system. While in the simula-
tion trials, we recorded participants’ visual information 
(piped directly from the mHMD), their geographic 
information (polled from wireless georeferencing of 
the mHMD to lighthouse base stations), key simulation 
events (available from automata state data), as well as 
users’ gaze behaviors (calculated in a post-processing 
step using ray-tracing). Each of these four pieces of in-
simulation information were fused to a common GIS 

Fig. 10  Vehicle agents in the intelligent driver model (IDM) along a model streetscape
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infrastructure for subsequent analysis. For geographic 
information, we collected in-simulation data in ways 
that would permit direct comparisons to GPS data from 
our real-world observations and diaries of embodied 
locomotion so that counterfoil measurements could be 
made. To evoke goal-driven behavior, we tasked human 
users with approaching a signalized crossing in the 
VGE and crossing through traffic. Users could choose 
to do so by adhering to crossing signals, ignoring sig-
nals and choosing gaps in moving traffic, or jaywalking 
outside crossing areas. We did not instruct users as to 
which strategy to select.

8 � Experimental analysis of motion control 
in the Sidewalk2Synth pipeline

With these functionalities in the VGE, then, the pipe-
line for Sidewalk2Synth is in place. To test it in use-case 
scenarios for embodied locomotion, we built a series 
of experiments with live participant-users to evaluate 
how they would embody themselves to the VR repre-
sentation of the model. This test was evaluated as the 
robustness of motion control in use, gauged against 
real-world locomotion data form our observation sets 
described in Sect. 3.

The experiments tested a range of streetscape scenar-
ios for encounters that take place in small encounter-
based moments of space and time. These included tasks 
to evoke embodied locomotion relative to:

•	 The urban geography and urban design of the built 
environment;

•	 Ambient pedestrian-pedestrian interactions as steer-
ing and collision avoidance;

•	 Social dynamics of collective assembly and crossing 
behavior at the crossing curbside;

•	 Indicators from signalized crossing infrastructure; 
and

•	 Traffic dynamics and traffic gaps.

8.1 � Real‑world experiments
Over an 18-month duration, we recruited human par-
ticipants to wear a chest-mounted video camera, GPS, 
and a smart watch and asked them to record data as they 
engaged in their day-to-day streetscape activities around 
New York City and its suburbs. From this corpus of data, 
we extracted a series of road-crossing epochs form the 
broader activity-set, and we used these as validation 
cases for the Sidewalk2Synth pipeline. Specifically, we 
used crossing trajectories for urban and suburban areas, 
four-way crossings, end of block and mid-block cross-
ings, signalized and unsignalized crossings, and a variety 
of road lanes. We also used data for different times of the 
week and day and night across different seasons with dif-
ferent streetscape physical conditions (puddles, sidewalk 
obstacles) and crowd conditions.

8.2 � Heuristic counterfoil experiments
As a control, we implemented a series of motion con-
trol algorithms and heuristics that are popularly used in 
agent-based modeling of pedestrian locomotion (Fig. 11). 
Several of these were designed to produce mathematical 
motion, as Lévy flights (Bartumeus et  al., 2005; Brock-
man et al., 2006; Viswanathan et al., 1996) and Brownian 
motion (Schweitzer, 1997). Others were coded to pro-
duce path-planning behavior by shortest path traversal 
(A* (Hart et al., 1968) and Dijkstra (1959)) with collision 
detection and avoidance by Moore and von Neumann 
cellular automata neighborhoods (Blue & Adler, 2001; 
von Neumann, 1951). We also implemented a social force 
model (Helbing & Molnár, 1995) of crowded movement 
through a sidewalk corridor (with walls as a bounding 
condition for the physical repulsion factor).

In heuristic experiments, a variety of agent popula-
tions were used, depending on the heuristic, ranging 

Fig. 11  Samples of the movement generated by the purely algorithmic models
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from 1 ≤ n ≤ 100, depending on the simulation scenario. 
We use the data (spatial and temporal position for loco-
motion trajectories) as a point of quantitative compari-
son for our human trials. Primarily, the heuristics show 
results for specific locomotion behaviors (e.g., path pur-
suit, repulsion effects, collision avoidance, etc.) that are 
useful as benchmarks.

8.3 � VR experiments
8.3.1 � Streetscape geography and urban design
To support experimentation with physical embodied 
locomotion relative to built environment context, we 
developed VREs with one-to-one mapping to real world 
counterparts. Users of the pipeline, moving simultane-
ously through a VR representation of the geographic 
environment and through a tactile physical studio space 
therefore have an opportunity to engage their natu-
ral perception, cognition, action, and locomotion skills 
to plan paths, encounter waypoints, deploy wayfinding 
and navigation, steer, see and respond to collisions, and 
engage in ambulation. Critically, the egocentric (user-to-
environment) and allocentric (environment-to-environ-
ment) distances in the VR environment were set to match 
those of real-world streetscapes. Specifically, we set aside 
a physical area of 82.72 square meters (890.34 square 
feet) that user-participants could move through, while 
rendering the same space in VR and adding synthetic 
space covering several city blocks in the virtual surround-
ings (Fig. 12).

Within the VR space, we included physical features of 
streetscapes that play into embodiment (Granie et  al., 
2014), including building façades, window fronts, door-
ways, awnings, vegetation, sidewalks with varying tex-
ture, marked pedestrian crossings (Havard & Willis, 
2012), roadways with lane markings (Kadali & Vedagiri, 
2013), traffic lights (Yang et al., 2016), pedestrian cross-
ing lights (Lipovac et al., 2013), as well as physical light-
ing and shading effects (Choi et  al., 2006) (Figs.  10 and 
12). A unit of distance between these features in the VR 
representation was matched to a unit distance in the 
physical traversal space, and we built the scenes using 
LiDAR measurements from our observations of real 
crossings in and around New York City. These features 
can be swapped easily, or they may be drawn procedur-
ally from GIS (Torrens, 2015a, 2015b). In the examples 
that follow we will discuss experiments for a suburban 
type streetscape with a signalized pedestrian light-con-
trolled (PELICAN) mid-block crossing and two lanes of 
traffic. Elsewhere (Torrens & Gu, 2023), we have shown 
a VR environment that was built for a dense downtown 
streetscape with a four-way signalized crossing, designed 
to mimic a counterpart site in Brooklyn, NY, USA. The 
built setting can also be rendered in very high-resolution 
or at lower resolutions. In the examples that follow, we 
show results for a “good-enough” resolution rendering, 
which user experiments showed to be useful for motion 
control, and not too distracting vis-à-vis uncanny valley 
artifacts (Kim & Torrens, 2024).

Fig. 12  The urban design for our real observations and counterfoil simulation
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8.3.2 � Streetscape crowding
Our observations (Sect.  3) showed that crowding at 
crosswalks in particular was a factor in shaping possible 
pedestrian embodiment to a given crossing scene. We 
experimented with varying levels of pedestrian crowd-
ing on sidewalks, crosswalk assembly areas at the curb-
side, and in crosswalks. Only a single user-participant 
was entered into the experiments per trial, but varying 
numbers of agent-pedestrians were included to create a 
diversity of crowding scenarios (Fig. 12). For the experi-
ments that we report here, in suburban settings, our 
observational data implied that a crossing crowd of one 
to four pedestrians (five when adding a user-participant) 
matches the real world (although the size of these crowds 
could be varied to very large dimensions if desired).

8.3.3 � Peer effects on streetscapes
To experiment with peer effects (Pfeffer & Hunter, 2013), 
e.g., from social influence (Faria et  al., 2010; Mirzaei-
Alavijeh et al., 2019), group motion (Rosenbloom, 2009), 
authority effects (Gutierrez et al., 2014), or inter-personal 
biases (Collett & Marsh, 1974), we varied the demo-
graphic makeup and appearances of the avatar represen-
tations of the agent-pedestrians. Further, we provided 
different profiles for motion behavior (and animation 
cycles) to represent hurried, slow-moving, patient, impa-
tient, signal-abiding, and jaywalking behaviors (Figueroa-
Medina et al., 2023; Sueur et al., 2013). Our experimental 
axes for variation were (1) risk profile (on a continuum 
from safe motion control by waiting for a pedestrian 
“walk” signal, to risky motion by crossing or attempting 
to cross through moving traffic during a “don’t walk” sig-
nal); (2) sex profile (male or female avatar appearance); 
and (3) social appearance (wearing business attire or 
casual clothing). Specifically, risky behavior was weighted 
to instruct the agent to cross only when there was a traf-
fic gap, but completely ignoring the crossing signal. This 
resulted in preemptive crossing epochs of up to 15  s 
before the “walk” signal was illuminated.

8.3.4 � Streetscape signals
Our central experimental lever for the mediated (i.e., 
signs) space of streetscapes centered around streetscape 
signals: both traffic lights and pedestrian crossing lights 
(Lipovac et al., 2013). Observational research from other 
authors has shown significant variation in the cues and 
actions that pedestrians take in response to signalized 
features on streetscapes, including age and sex differ-
ences in adherence to the motion rules that they advertise 
(Tom & Granié, 2011), as well as variation in expected 
norms across different countries (Gang et  al., 2011). 
Similarly, our own observations showed varying pro-
pensity among pedestrians to adhere to crossing signals, 

including alternating checks between signals and reac-
tions of peer pedestrians in different crowd densities at 
crossing sites (section 11). Pedestrians’ propensity to vio-
late crossing rules and lights is particularly well-studied 
in the literature, and observations point to demographic 
variation as well as peer effects (Onelcin & Alver, 2015).

8.3.5 � Streetscape traffic gaps
Pedestrians and vehicles come into perceptual contact as 
well as potential physical contact when walkers enter the 
roadway through jaywalking or at signalized crossings. 
When doing so, pedestrians usually make a quick judge-
ment of the spacing and timing in traffic interactions 
that they may have available to effect collision-free loco-
motion with other pedestrians and with vehicles, which 
they then map to their own assessment of their capabili-
ties to produce matching movement. This can happen in 
very small windows of space and time (Kadali & Vedagiri, 
2013; Onelcin & Alver, 2015), or it may involve a delibera-
tive assessment of a streetscape scene (Nesoff et al., 2018; 
Viola et al., 2010). The means by which pedestrians assess 
and decide on available gaps in traffic is well-covered in 
the observational literature, with results suggesting that 
there is significant variation based on age (Dommes & 
Cavallo, 2011; Zivotofsky et  al., 2012), sex (Underwood 
et  al., 2007), and skill (Liu & Tung, 2014; Oxley et  al., 
2005). In our simulation experiments, we simulated dif-
ferent traffic patterns with different gaps (Liu & Tung, 
2014; Plumert et  al., 2004). We also programmed dif-
ferent risk and decision profiles (Sueur et al., 2013) into 
agent locomotion to produce a range of gap acceptance 
behaviors for users to embody themselves to in simula-
tion. We experimented with a range of different vehicles, 
acceleration profiles, traffic density, and traffic patterns 
(free-flow, bunching, gap-closing).

9 � Analyzing motion
We considered whether we could validate the motion of 
users in our system relative to the observed data that we 
obtained via fieldwork. Doing so required that we build 
a common ground truth between the streetscape and 
simulation. Much more experimental analysis is available 
in our controlled studio settings than in real-world sce-
narios. Indeed, our controlled studio experiments widely 
permit motion capture, motion tracking, gaze detection 
and tracing, gaze fixation, timings, and ego-centric and 
allo-centric distance calculation. For live scenarios on 
real streetscapes, we were more limited. However, we can 
build motion trajectories and full movement paths from 
differentially-corrected GPS data that we have from real-
world scenes and match these to commensurate data in 
our virtual experiments. For our VR trials, we relied on 
wireless location-awareness provided by range-finding 
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between users’ mHMD and a set of lighthouse base sta-
tions distributed around our studio space. Our wireless 
positioning has a locational accuracy of millimeters, 
which we verified through motion capture. GPS data, 
with differential correction, has a below-meter accuracy 
as we have (almost equidistant) proximity to continuous 
operating reference stations (CORS) in our GPS trace in 
nearby Newark, NJ and Long Island, NY.

9.1 � Quantitative analysis of locomotion
To evaluate whether the Sidewalk2Synth pipeline was 
able to create locomotion scenarios with parity to real-
world streetscape embodiment, we analyzed motion tra-
jectories directly from our experiments with real walkers 
on-the-ground in New York City and its suburbs. We also 
measured counterfoil trajectories for user-participants in 
our studio-based VR experiments. Additionally, we meas-
ured heuristic motion from parallel simulations, and then 
compared them empirically. We note that the resolution 
of our VR experiments within the Sidewalk2Synth pipe-
line is very high (sub-centimeter in space and 120 Hz in 
time), while GPS signals in the real world were relatively 
coarse (at best, sub-meter in space and 10  Hz in time). 
To establish data parity ahead of analysis, we up-sampled 
the GPS trajectories in Hz, while preserving the original 
frames. We subsampled crossing epochs from our real-
world trajectory corpus that had equivalent lengths that 
matched movement trials in the VR/studio space.

We used a variety of motion statistics to generate 
measurements. For step-by-step motion, we studied cor‑
relation of adjacent turning angles (Benhamou, 2004), as 
an indicator of step-by-step directional persistence over 
a trajectory. Low correlation values (near zero in value) 
may indicate a lack of statistical association between one 
turning angle and the next (as in Brownian motion, for 
example). High positive correlation values show code-
pendence between larger step-by-step turning angles, 
as would occur if a pedestrian is consistently turning 
as they move (near + 1). High negative correlation is 
indicative of inverse stepping, as in cases of relatively 
high sinuosity along a trajectory (near –1) by shuffling 
or stutter-stepping. We analyzed the general directional 
trend of motion using mean cosine of turning angle (Cod-
ling et  al., 2008) (p. 823). Higher cosine values indicate 
relatively straight movement, while lower values may be 
associated with sinuosity. We calculated cosine of turn-
ing angle between successive fixes on trajectories and 
we then averaged (mean) across the trajectory (so, direc-
tional preponderance on a per-trajectory basis). Note 
that generally turning angle is related to speed of move-
ment: pedestrians likely have more capability to (instan-
taneously) turn at low speeds than they would have while 

running, although pedestrians can usually exercise con-
siderable ability to shift direction at most speeds due to 
their ambulatory dexterity and ability to pivot through 
weight shifting, twisting, heel maneuvers, and so on, as 
in dance (Ada et  al., 2003). We additionally estimated 
the probability of turning in the same direction, aver-
aged on a per-step basis over the movement sample. Our 
movement data were collected at relatively high resolu-
tions of space and time, with the implication that move-
ment statistics could be calculated over several scales. 
To account for this, we also performed fractal analysis 
of trajectories (Nams, 2006), estimating a general linear 
fractal as well as a mean fractal. The mean fractal is cal-
culated in a forward direction from the first location fix 
in the motion sequence, then again in a backward direc-
tion from the last location fix, taking the average of the 
two (Nams, 2006; With, 1994). Fractal analysis has the 
added benefit of allowing us to compare trajectories in 
our experiments with those of other real-world stud-
ies and simulation studies. Generally, the fractal dimen-
sion of a trajectory sample would near a value of + 1 for 
purely straight movement (Torrens et al., 2012), and tend 
toward a value of + 2 for (infinitely) sinuous movement 
(purely random walks, for example, would generally cast 
values toward + 2) (Bartumeus et  al., 2005; Batty, 1997). 
A set of movement-based building blocks were also cal-
culated as part of these compound analyses, including 
step count, path length, number of steps per movement 
trip, steps per unit length of motion, and step size, which 
we additionally used to assess parity of structure between 
simulation outputs and real-world measures. We also 
mention that because our virtual experiments were per-
formed in a studio, we have access to unit distance val-
ues that map to real space. In aggregate, the measures of 
turning angle and of fractality yield a relative measure of 
(1) directional preponderance, and of (2) relative sinuos-
ity, between motion sequences. In each case, movement 
statistics were implemented following (Nams, 1996).

9.2 � Qualitative analysis of embodiment
We administered a set of questionnaires to the human 
user-participants to evaluate their personal sense of 
embodiment while engaged in the simulation trials. The 
questions were tasked with uncovering two principal fac-
tors. The first set (P-questions) evaluated how users felt 
embodied to the simulation as a virtual medium. The 
second set (R-questions) evaluated users’ embodiment 
to the simulation as a streetscape, asking specifically how 
they engaged with dynamic elements of the synthetic 
environment. The general tone of the questions were as 
follows (the exact wording of the questions is shown in 
full in Appendix A, Figure A4).



Page 24 of 36Torrens and Kim ﻿Urban Informatics            (2025) 4:16 

Embodiment to a virtual medium.

•	 P1: Whether users felt connected to the synthetic 
streetscape

•	 P2: Whether users felt surrounded by the virtual 
streetscape

•	 P3: Whether users felt the virtual streetscape simply 
looked like pictures

•	 P4: Whether the users felt absent from the virtual 
streetscape

•	 P5: Whether the users felt that they had agency in the 
virtual streetscape

•	 P6: Whether the users had a realistic sense of naviga-
tion in the virtual streetscape

•	 P7: Whether the users felt compelled to pay attention 
in the virtual streetscape

•	 P8: Whether the virtual streetscape held 
users’captivation

•	 P9: Whether the virtual streetscape felt real to users
•	 P10: Whether the virtual streetscape held consist-

ency with users’real world experiences
•	 P11: Whether users felt they could distinguish the 

virtual streetscape from the real world

Embodiment to streetscapes

•	 R1: Whether users crossed synthetic roads with 
behavior that they felt matched their real-world 
behavior

•	 R2: Whether users sought to avoid physical collisions 
with vehicles

•	 R3: Whether users sought to avoid physical collisions 
with pedestrians

•	 R4: Whether users obeyed crossing signals

10 � Results
Our analysis of the performance of the Sidewalk2Synth 
pipeline with real immersed users had two principal aims. 
First, we sought to establish whether the model could 
evoke realistic embodied locomotion in applied and 
embodied user-participating simulation. Second, if the 
pipeline is indeed a useful counterfoil to real streetscape 
dynamics, we aimed to use it to evaluate embodied loco-
motion scenarios. In short, our results show that the 
pipeline is a close fit (but not a completely convincing fit) 
to reality, and that it can support experimental analysis 
with human users in hard-to-test scenarios with bearing 
to real streetscapes. Detailed empirical results are avail-
able in Appendices. An illustrative example of the results 
is shown in.

10.1 � Can Sidewalk2Synth evoke realistic locomotion 
from immersed human users?

Our findings demonstrate that the Sidewalk2Synth pipe-
line is indeed capable of evoking locomotion from users 
with embodied characteristics that match to real-world 
counterpart streetscape encounters. Results for real-
world movement (n = 20 counterpart comparisons) are 
detailed in Appendix A section 11. Results for immersed 
user locomotion (n = 24) on Sidewalk2Synth are provided 
in Appendix A section 11. Results for other agent-based 
locomotion heuristics (n = up to 100) from the movement 
modeling literature are shown in Appendix A section 11.

An “apples to apples” comparison shows that Sidewalk-
2Synth produces motion that is markedly distinct from 
our comparison set of motion control algorithms and 
heuristics. Essentially, the motion produced in Sidewalk-
2Synth is much more organic than would be generated 
by heuristic agent-based routines. The closest empirical 
fit was between user locomotion in Sidewalk2Synth and 
crowd steering behavior from the Reynolds model (Reyn-
olds, 1987, 1999), which produced a fractal dimension 
of ~ 1.01 for generalized steering, and ~ 1.024 for steer-
ing by wandering behavior. The averaged fractal dimen-
sion for our real-world observations was 1.023 and for 
simulation it was 1.04. The fractal dimension results for 
other heuristics were wildly different than our observa-
tion data and our human trials in Sidewalk2Synth and we 
thus conclude that our pipeline is closer to reality than to 
generalized computational heuristics.

Nevertheless, the results from our comparisons 
between Sidewalk2Synth and our observation data from 
real streetscapes indicate that we have some work to do 
to get a tight fit between reality and our simulation, as 
metrics are closely matched in some parameters, but in 
discord for others. Human participants in the Sidewalk-
2Synth simulations tended, on average, to move with 
less steps per unit length than their counterparts moving 
through real urban spaces (an average of 35.478 through 
the simulation, and 46.482 in real spaces). Average mean 
cosine results were relatively comparable between reality 
and simulated environments (average of 0.941 and 0.946 
respectively). However, the average probability of turn-
ing in the same direction was much higher in simulation 
than in the real world (0.765, compared to 0.205 for the 
real world). The average correlation for adjacent turning 
angles was higher for reality than in the simulation, and 
the correlation in reality was negative (which is indicative 
of peripatetic turning on a step-by-step basis). The aver-
age fractal dimension for simulation was also higher than 
we recorded for movement in real spaces: 1.023 for real-
ity and 1.04 for simulation, average across all paths. This 
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means that movement in the simulation is more sinuous 
than in reality, per-trip: even if the step-by-step results 
show relative persistence on locomotion, small adjust-
ments can add-up to a larger fractal dimension for the 
longer trajectory of locomotion. Although, we note that 
compared to our agent heuristic comparisons, Sidewalk-
2Synth was a much closer fit to reality.

Here, we offer some caveats. First, the simulation sce-
narios contain some relatively extreme test cases of risky 
behavior, with many events of user jaywalking and dash-
ing between unsafe traffic gaps. The real-world metrics 
are therefore actually a better fit to the safe scenarios in 
our simulations than they are too risky scenarios (for 
which we do not have observation data, due to the haz-
ards involved in real life). Second, there are some resolu-
tion disparities between simulation data and real-world 
GPS data that reduce the efficacy of some of the trajec-
tory statistics. This is a by-product of the synthetic reso-
lution of our model output, which could theoretically 
approach infinite fineness. Third, we point out to the 
reader that our simulation scenarios are a much closer fit 
to reality than the companion heuristics from other mod-
els that we tested. Fourth, we note that there is a broad 
variation in results of movement statistics for different 
streetscape types. Our real-world experiments showed 
a shift across results when compared for residential and 
non-residential streetscapes, for example.

10.2 � Did users feel embodied to Sidewalk2Synth?
Our evaluation of user embodiment while engaging in 
locomotion trials in the simulation showed that users did 
indeed seem to be convinced by Sidewalk2Synth’s ability 
to support embodied locomotion. In other words, Side-
walk2Synth supported verisimilitude in users’ embodied 
locomotion: against the caveat that of course the simula-
tion is synthetic, the combination of virtual embodiment 
scenarios delivered against real physical locomotion in 
a studio setting allowed users to behave naturally with a 
convincing connection to the real world.

Results from user questionnaires are shown in aggre-
gate form in Appendix A, section 11. Users were invited 
to score their responses with negative, neutral, or posi-
tive valence on a Likert scale. These valences are color-
coded in Appendix A, section 11 and the total number of 
responses per score are listed as integers. Users’answers 
to the presence questions indicated that they felt “there” 
in the synthetic streetscape (P1), and indicated that the 
felt surrounded by the streetscape (P2) (i.e., they had 
strong ego-centric presence) and that they lost sense of 
the studio environment while engaged with the mHMDs 
(P6). Not surprisingly, users were aware that the simula-
tion was virtual (P11). Users did not indicate a negative 
sentiment toward the pipeline’s presence factors when 

directly questioned on that topic (P3 and P4). Users also 
felt that they could act-out their behavior in the simu-
lated streetscape (P5) and they felt engaged by the simu-
lation to pursue their behavior (P7 and P8).

10.3 � Using Sidewalk2Synth to test different scenarios 
for embodied locomotion

If the pipeline is indeed trustworthy as a useful counter-
foil to reality, can we then test different motion control 
scenarios of real, live, behaving participant-pedestrians in 
it? There is a huge swath of potential experimental levers 
that we could “pull” in virtual form, to evaluate what 
their impact might be on streetscape policies in reality. 
Here, we examine two such levers, which have currency 
in the theoretical and case study literature for streetscape 
science: crowd size and peer effects. Both come into 
convergence in the form of crossing safety, which the 
conceptual literature has associated as being a phenom-
enon that could potentially frame and explain recent 
increases in road-crossing harm that have steadily been 
growing despite dedicated efforts to safeguarding sites on 
streetscapes via Vision Zero (City of New York 2019) and 
other campaigns. Experimentation with road-crossing is 
all but infeasible in reality due to the dangers involved. 
As such, virtual streetscapes have several experimental 
value platforms, but need to be realistic at micro-scales 
of streetscape environments, individual behaviors, and 
interpersonal dynamics of pedestrians to be reliable as a 
platform for testing.

10.3.1 � Crowd size
In simulation, we established a range of scenarios to vary 
the crowd size at crossings. These ranged from dyads to 
larger groups (“crossing pelotons”). The crowding scenar-
ios showed that immersed user-participants in relatively 
dense pelotons tended to move in largely the same man-
ner as those in dyads. Average mean cosine for low den-
sity (0.951) and higher density (0.941) were a close match, 
as were the probabilities of turning in the same direction 
(0.773 for dyads, 0.758 for pelotons), average correlation 
of adjacent turning angles (0.565 for dyads, 0.521 for pel-
otons), and average fractal dimension (1.044 for dyads, 
1.046 for pelotons). However, human participants that 
crossed with pelotons used more steps per unit length 
(40.642 on average) than those in dyads (38.848 on aver-
age). One explanation is that dense pelotons create more 
potential collisions, and participant stutter-stepping is 
used in locomotion as a response.

10.3.2 � Peer effects
We established a set of simulation scenarios with varying 
mixtures of risk-taking among agents. Risk-averse agents 
would wait to cross a road only at a signaled crossing site, 
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and they would adhere to crossing signals for “walk” and 
“don’t walk” signals (green pedestrian icon and red hand 
icon respectively). Risk-taking agents were apt to ignore 
these signals, would move quickly to cross a road, and 
would also accept very tight gaps in moving traffic while 
jaywalking. These groupings were introduced as scenar-
ios to test whether human participants would peer-adopt 
risk-taking behavior or risk-aversion as a norm in their 
own crossing decisions.

For human participants immersed in the simulation, 
risky-behaving agent peer groupings were associated 
with a lower number of steps per unit length of loco-
motion taken by immersed human participants in the 
simulation scenarios. Average steps per length for risk-
averse peer environments were 47.601, while they were 
on average 32.512 and 37.802 respectively for mixed-
risk and risk-taking peer group crossing contexts. Par-
ticipants moved faster and hesitated more in risky peer 
groups than they did among risk-averse peers. Average 
mean cosine was higher when exposed to risk-taking 
peers (averaged as 0.935 for safe peers and climbing to 
0.939 for mixed-risk peers and then again to an average 
of 0.95 for risky peer contexts). The probability of turning 
in the same direction on a step-by-step basis increased 
as human participants were exposed to risky peers: aver-
ages were 0.751 for risk-averse peer context, 0.76 for 
mixed-risk contexts, and 0.776 around risk-taking peers. 
Fractal dimension results for different scenarios of risk 
context were relatively stable across experiments (averag-
ing 1.041 to 1.046). These results show that human par-
ticipants adopted straighter movement paths when with 
risk-taking peers than they did around risk-averse agents. 
We interpreted this as indicating that human participants 
(perhaps blindly) followed risk-taking peers at crossings. 
This peer effect was also apparent when we reviewed 
playback animations of the participant trials.

11 � Automating Sidewalk2Synth as an end‑to‑end 
pipeline

Development of Sidewalk2Synth from first principles 
involves a concerted effort to sweep through data collec-
tion, model development, user studies, and simulation 
experiments. To examine whether we might be able to 
encapsulate Sidewalk2Synth in a portable and generaliz-
able pipeline, we developed a preliminary automated ver-
sion. This is designed to run, end-to-end (i.e., from live 
data feeds, through modeling, via simulation, to output) 
in real-world contact scenarios. Our prototype automa-
tion takes on two forms: a container-based solution that 
is designed to run on edge devices, and a portable aug-
mented reality version that is intended to run on tablets 
and phones.

11.1 � Edge Sidewalk2Synth
Edge devices are growing in popular use for smart city 
applications. Generally, they consist of relatively light 
computer hardware (typically, system-on-chip (SoC) 
devices) that contain a power source, a small mother-
board, a low-power CPU or GPU, and wireless network-
ing. Edge devices typically run containerized software 
and firmware that can be tailored to particular applica-
tions, such as computer vision. Usually, edge devices are 
federated into an array of near-phenomena computing 
and they are tasked to perform preliminary analyses near 
streetscapes, for example, and to pass results (but not 
necessarily full video streams) to a centralized computer 
for down-stream activity such as multi-site simulation. 
In this configuration, they are referred to as Wi-Edge 
(Torrens, 2022a, 2022b), working wirelessly in concert to 
perform edge computing or edge artificial intelligence, 
typically over high-bandwidth and low-latency (HB/LL) 
network architectures.

For our prototype, we set up the front-end of Sidewalk-
2Synth (video input and machine-learning) and partially 
implemented the back-end (trajectory prediction from 
learned bounding boxes and video frame association) on 
Wi-Edge. In this configuration, the agent-based pedes-
trian and driver behavior are sidestepped completely. Our 
results show that Edge Sidewalk2Synth can work in real-
time on busy streetscapes (Fig. 13, section 11). Detected 
crossing signals, pedestrians, pedestrian pose-graphs, 
pedestrian trajectories, and streetscape atlases could 
potentially be passed on to centralized simulation run-
ning on a CPU or cluster, feasibly with edge input across 
multiple sites in a city. (We note that we only tested 
edge Sidewalk2Synth on one edge device for this paper, 
but elsewhere (Vyas & Torrens, 2024) we have shown it 
working across many devices by federated learning.)

11.2 � Augmented Sidewalk2Synth
Our second automation prototype tackles the missing 
components of Edge Sidewalk2Synth, chiefly the lack of 
a live run-time agent-based simulation. We implemented 
an augmented reality (AR) version of the pipeline, Aug-
mented Sidewalk2Synth, running completely in real-time 
via Unity on Apple iOS (Torrens & Gu, 2023). In the AR 
implementation, a light version of the pedestrian agents 
and driver agents runs. Computer vision and manual 
geo-fencing is used to interpret the VGE directly from 
a tablet camera. We ran detections for sidewalks, roads, 
pedestrian crossings, street furniture, lampposts, traf-
fic signs, and buildings. Agents will steer to avoid colli-
sion objects, other agents, and agent-driven vehicles. 
They will also cross only at crosswalks. The agent system 
is rendered via Unity over the live camera video feed, 
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Fig. 13  Edge AI deployment (via Wi-Edge) of deep learning for detection of locomotion during road-crossing, and embodiment to crossing signals 
(Potdar & Torrens, 2019; Torrens, 2022b)

Fig. 14  Augmented reality version of Sidewalk2Synth running on a nighttime streetscape in downtown Brooklyn, NY, USA. Images are direct 
screenshots from an Apple tablet
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providing a mixed-reality (MR) mash-up of Sidewalk-
2Synth and the live scene. In this way, users can embody 
themselves directly in the pipeline, running what-if sce-
narios on top of live streetscape dynamics (Fig. 14).

12 � Conclusions and future work
In this paper, we have evaluated whether simulations 
might be drawn to closer parity with real-world dynam-
ics for streetscape applications. Our approach leans on 
two dimensions of this query: whether human movement 
through streetscapes might be represented in higher-
fidelity, and whether one might be able to represent 
embodiment in simulation. We consider both factors as 
convergent around the topic of embodied locomotion, 
and we established an experimental protocol to collect 
data on real-world embodied locomotion, to pipe those 
data into model form, and to generate dynamic simula-
tions with the products. We also examined whether real 
human users could be brought “into” such simulations, 
via embodied locomotion, for the purposes of experi-
mentation with virtual scenarios. We approached user 
embodiment in two fused formats: first, we allowed users 
to move with real locomotion through a studio setting, 
where they could walk, wander, and look around with 
their natural behavior; and second, we developed a high-
fidelity streetscape simulation that we could deliver to 
users as embodied VR. An obvious question is whether 
this works with a reasonable match to real-world embod-
ied locomotion, and we evaluated this match by testing 
simulated and real locomotion against real-world tra-
jectory samples from streetscapes around New York 
City and its suburbs. We also engaged users with ques-
tionnaires to evaluate their sense of embodiment in the 
simulation and its authenticity relative to their real world 
encounters.

A limitation of our approach is that it only consid-
ers one-way pedestrian movement (a human user and 
its surrounding peer dyad and group crossing together 
without ongoing pedestrian traffic from the other side of 
the street). This approach was used to control for influ-
ence on gap determination, gap acceptance, and gap 
action. However, it is unrealistic in dense urban areas. 
In a related paper we have implemented a different ver-
sion of the simulation with two-way crossing and crowd 
formation along sidewalk segments (Torrens & Gu, 2021, 
2023). Integrating that crowd-based approach into Side-
walk2Synth will be a task for future development. Criti-
cally, we need more physical, tangible studio floor space 
to build user experiences that can stretch over two side-
walk segments and a roadway. Our proposed solution 
is to use redirected walking (Razzaque et  al., 2002; Sun 
et al., 2016, 2018) as a way to fold the virtual space of the 
simulation to fit within a smaller physical space.

Our results show that a pipeline that moves from 
observation, through models, to simulation and user 
interaction is feasible and we introduced a detailed meth-
odology for how that can be accomplished using mix-
tures of sensing technology, deep learning, agent AI, and 
VR graphics, with GIS providing support. Our analysis 
points to quantitative and qualitative evidence that users 
engage simulated streetscapes with embodied locomo-
tion that matches reasonably and sensibly to the real 
world. We also showed a preliminary proof-of-concept 
using Sidewalk2Synth to evaluate road-crossing scenar-
ios with simulated dangers.

Several future questions remain open to exploration 
around the ideas that we have advocated for in this paper, 
and we discuss them both briefly and partially here with 
hope that readers may be interested in interpreting them 
in applications that intrigue them. The first relates to the 
concept of embodiment, which is broadly interpreted in 
conceptual form in the existing literature (see Sect.  2). 
We focused our development efforts on embodied loco-
motion, but other facets of embodiment could be stud-
ied with similar observational and simulation-based 
protocols, particularly social embodiment (which we 
reason could be very usefully examined through NVCs 
as motion capture data or deep learning on poses). A 
second promising vector for future study could focus 
around automating the sorts of pipelines that we have 
shown in Sidewalk2Synth. Our early prototyping has 
shown that components of the Sidewalk2Synth technol-
ogy stack can be ported to edge devices as a form of Edge 
AI and of mixed-reality AR. One could feasibly imagine 
federations of these interoperating as Wi-Edge (Tor-
rens, 2022a, 2022b, 2023) over federated learning (Vyas 
& Torrens, 2024), with the ability to generate widespread 
streetscape insight from hyper-local epochs of embodi-
ment. In ongoing work, we are developing a fused sys-
tem that will run Sidewalk2Synth seamlessly over edge 
devices and AR, via a federated simulation. Third, it is 
feasible that aspects of the pipeline that we demonstrated 
here could be ported to wearable technologies, particu-
larly to AR glasses. We have shown a prototype of the 
agent AI simulation stack that works as AR in (Torrens & 
Gu, 2021, 2023). The prospect of turning AR-based cam-
eras outward to the embodied streetscape, while an edge 
device, on-device computing, or off-site computing rea-
sons on the ego-centric viewshed of an individual pedes-
trian, and returns personalized and localized insight that 
is both context-aware and situation-aware is potentially 
a very promising area of development and inquiry, with 
significant potential returns to the conceptual literature 
in behavioral geography in particular. Fourth, it is feasi-
ble that pipelines that flit easily from reality to simula-
tion and back, involving real human users at parity to the 
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space–time scales of their lived experiences could suggest 
a new era for geosimulation (Benenson & Torrens, 2004; 
Torrens, 2004) in particular. In this paper, we aimed to 
develop simulations with high realism. Our intended out-
put was therefore not an abstraction of reality, but rather 
an alternative reality. We note that this is an approach 
that differs from deep learning (LeCun et al., 2015) and 
existing forms of Sim2Real modeling ((Doersch & Zis-
serman, 2019)which is by contrast focused on pattern-
matching as an outcome, rather than fidelity of behavior). 
Approaches such as Sidewalk2Synth, instead, aim toward 
new veins of modeling that are more aligned with arti-
ficial general intelligence (AGI) (LeCun, 2022). An obvi-
ous question, perhaps, is whether a foundation model 
for embodied locomotion might be in reach and if so 
whether it could inform human applications, or even 
applications in robotics.
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